A DIY Solution For Controlling Robots And Quadcopters

RC

RC transmitters used for controlling robots, quadcopters, airplanes, and cars really aren’t that complex. There are a few switches, pots, a screen and a radio transmitter. The maker toolbox already has all these components, so it only makes sense someone would try to build their own RC transmitter.

[Oscar]’s project started by gathering a bunch of toggle switches, 2-axis joysticks, pots, tact switches, an Arduino, LCD, and a Ciseco XRF wireless module. These were attached to a front panel made of polystyrene and work on the communications protocol began.

It should be noted that microcontroller-powered RC transmitters with XBees is nothing new. There was a Kickstarter for one last year, but the final product turned out to be bit janky and full of fail wiring, We’re really glad to see [Oscar]’s attempt at a DIY RC transmitter, and hopefully we’ll see this project taken up and improved by others.

Continue reading “A DIY Solution For Controlling Robots And Quadcopters”

Electro-permanent Magnets For Quadcopters

electromagnet

Imagine a quadcopter hovering above a payload – a can of beans, perhaps. The ‘copter descends onto the payload, activates an electromagnet, and flies away with a hobo’s dinner. Right now, this is a bit of an impossibility. A normal electromagnet that powerful would consume an amazing amount of power, something quads don’t usually have in abundance. With the OpenGrab project, the dream of a remote-controlled skycrane is within reach, thanks to some very clever applications of magnetics.

The tech behind the OpenGrab is an electro-permanent magnet, basically an electromagnet you can turn on and off, but doesn’t require any power to stay on. OpenGrab was heavily influenced by a PhD thesis aimed at using these devices for self-assembling buildings.

This project had a very successful Kickstarter campaign and has seen some great progress in the project. While beer doesn’t come in steel cans anymore, we can imagine a whole lot of really cool applications for this tech from infuriating electronic puzzles to some very cool remote sensing applications.

Eradicating Invasive Species With Quadcopters

That right there is Sydney Golden Wattle, a fast-growing invasive species native to Eastern Australia that has the possibility of covering 20 percent of the bushland in Western Australia by the year 2020. [John Moore], a researcher at the Department of Food and Agriculture, wants to put an end to this infestation by destroying large swaths of wattle with a quadcopter armed with weed killer.

The plan for the robotic plant assassins is simple; take aerial photographs of the bushland in Western Austraila and identify stands of individual weeds. [Moore]’s robots are then dispatched to these stands of weeds to spray them down with weed killer.

The quadcopters are armed with a camera, allowing the operator to make sure the robot is hovering directly over the invasive weeds. Considering these weeds are found in somewhat inaccessible places – and the fact that just about everything in Australia is poisonous – these robotic weeders will kill more wattle than what could be done on foot.

We couldn’t find a video of the robot in action, or a demo of the herbicide spay system of [John]’s copter. If you can find one of those, send it in and we’ll put it up.

Thanks to [Michal] for sending this in.

Lift Beer With Quadcopters, Win Prizes

If you have a quadcopter and are looking for a beer delivery device, HobbyKing is putting on a beerlift competition The rules for the HobbyKing beer lift are pretty simple: lift the most beer with a quad/hex/octo copter and win a HobbyKing gift card.

There are 3 classes: Unlimited, which means a vehicle of any size goes, a 700 class for copters with a motor-to-motor diameter of 700 mm or less, and a Disaster class for the coolest crash.

So far the largest lift is a monsterous 2 meter octocopter by [Muresan Alexandru Camil] capable of lifting just over 47kg. In the 700 class, a bizarre looking 9-rotor copter built by the Whac-A-Mole flying team was able to lift 28kg.

The disaster category, a smaller quad built by [Gabriel Devault] was barely able to lift four cans of Coors Light water, while the current disaster class leader made a few valiant efforts to lift a keg. Protip: if you’re doing a blooper reel, Yakety Sax is definitely the way to go.

Update: Acrobatic Quadcopters Team Up

We usually envision small wheeled robots when we thing about swarm robotics but these cooperative quadcopters make us think again. This is an extension of the same project that produced those impressive aerial acrobatics. It may not be as flashy, but watching groups of the four-rotored flyers grab onto and lift loads is quite impressive. There is also a shot of one dropping a 2×4 and immediately compensating for the loss of weight. We’re not certain, but it looks like team lifting doesn’t require the 20 high-speed camera rig that the acrobatics did. We’ve embedded the demonstration video after the break.

Continue reading “Update: Acrobatic Quadcopters Team Up”

Autonomous Boat Plots Lake Beds

Although the types of drones currently dominating headlines tend to be airborne, whether it’s hobbyist quadcopters, autonomous delivery vehicles, or military craft, autonomous vehicles can take nearly any transportation method we can think of. [Clay Builds] has been hard at work on his drone which is actually an autonomous boat, which he uses to map the underwater topography of various lakes. In this video he takes us through the design and build process of this particular vehicle and then demonstrates it in action.

The boat itself takes inspiration from sailing catamarans, which have two hulls of equal size connected above the waterline, allowing for more stability and less drag than a standard single-hulled boat. This is [Clay]’s second autonomous boat, essentially a larger, more powerful version of one we featured before. Like the previous version, the hulls are connected with a solar panel and its support structure, which also provides the boat with electrical power and charges lithium-iron phosphate batteries in the hull. Steering is handled by two rudders with one on each hull, but it also employs differential steering for situations where more precise turning is required. The boat carries a sonar-type device for measuring the water depth, which is housed in a more hydrodynamic 3d-printed enclosure to reduce its drag in the water, and it can follow a waypoint mission using a combination of GPS and compass readings.

Like any project of this sort, there was a lot of testing and design iteration that had to go into this build before it was truly seaworthy. The original steering mechanism was the weak point, with the initial design based on a belt connecting the two rudders that would occasionally skip. But after a bit of testing and ironing out these kinks, the solar boat is on its way to measure the water’s depths. The project’s code as well as some of the data can be found on the project’s GitHub page, and if you’re looking for something more human-sized take a look at this solar-powered kayak instead.

Continue reading “Autonomous Boat Plots Lake Beds”

the Logitech receiver in question next to the mouse it's paired to

Uncovering Secrets Of Logitech M185’s Dongle

[endes0] has been hacking with USB HID recently, and a Logitech M185 mouse’s USB receiver has fallen into their hands. Unlike many Logitech mice, this one doesn’t include a Unifying receiver, though it’s capable of pairing to one. Instead, it comes with a pre-paired CU0019 receiver that, it turns out, is based on a fairly obscure TC32 chipset by Telink, the kind we’ve seen in cheap smart wristbands. If you’re dealing with a similarly obscure MCU, how do you even proceed?

In this case, GitHub had a good few tools developed by other hackers earlier — a Ghidra integration, and a tool for working with the MCU using a USB-UART and a single resistor. Unfortunately, dumping memory through the MCU’s interface was unreliable and frustrating. So it was time to celebrate when fuzzing the HID endpoints uncovered a memory dump exploit, with the memory dumper code helpfully shared in the blog post.

From a memory dump, the exploration truly began — [endes0] uncovers a fair bit of dongle’s inner workings, including a guess on which project it was based on, and even a command putting the dongle into a debug mode where a TC32-compatible debugger puts this dongle fully under your control.

Yet another hands-on course on Ghidra, and a wonderful primer on mouse dongle hacking – after all, if you treat your mouse’s dongle as a development platform, you can easily do things like controlling a small quadcopter, or pair the dongle with a SNES gamepad, or build a nifty wearable.

We thank [adistuder] for sharing this with us!