Building Robots With A 20×20 Grid

On autonomous robots, the most difficult challenges usually lie in the software and electronic realms, but the mechanics can also be very time consuming. To help address this challenge, [Nikodem Bartnik] is working on the Open Robotic Platform (ORP), a modular robotics chassis system designed to make prototyping as easy and affordable as possible. Video after the break.

The ORP is governed by a set of design rules to maintain interchangeability. Most of the design rules are very open, but the cornerstone of ORP is its standardized mounting plates featuring a 20 mm grid pattern of 3.5 mm mounting holes. These plates can be stacked using connecting rods, creating a versatile foundation upon which various components can be mounted.

[Nikodem] is on a mission to create and collect an entire library of these modular components. From custom 3D-printed holders that accommodate sensors, motors, wheels and dev boards to homemade PCBs that snap directly onto the chassis, everything to get your robot rolling as soon as possible. While manufacturing methods and materials are not limited, 3D printing and laser cutting will likely be the most popular manufacturing technologies for making your own parts.

Continue reading “Building Robots With A 20×20 Grid”

Arctic Adventures With A Data General Nova II — The Equipment

As I walked into the huge high bay that was to be my part-time office for the next couple of years, I was greeted by all manner of abandoned equipment haphazardly scattered around the room. As I later learned, this place was a graveyard for old research projects, cast aside to be later gutted for parts or forgotten entirely. This was my first day on the job as a co-op student at the Georgia Tech Engineering Experiment Station (EES, since renamed to GTRI). The engineer who gave me the orientation tour that day pointed to a dusty electronic rack in one corner of the room. Steve said my job would be to bring that old minicomputer back to life. Once running, I would operate it as directed by the radar researchers and scientists in our group. Thus began a journey that resulted in an Arctic adventure two years later.

The Equipment

The computer in question was a Data General (DG) mini computer. DG was founded by former Digital Equipment Corporation (DEC) employees in the 1960s. They introduced the 16-bit Nova computer in 1969 to compete with DEC’s PDP-8. I was gawking at a fully-equipped Nova 2 system which had been introduced in 1975. This machine and its accessories occupied two full racks, with an adjacent printer and a table with a terminal and pen plotter. There was little to no documentation. Just to turn it on, I had to pester engineers until I found one who could teach me the necessary front-panel switch incantation to boot it up. Continue reading “Arctic Adventures With A Data General Nova II — The Equipment”

Hackaday Podcast Episode 255: Balloon On The Moon, Nanotech Goblets, And USB All The Way

This week, Dan joined Elliot for a review of the best and brightest hacks of the week in Episode 0xFF, which both of us found unreasonably exciting; it’s a little like the base-2 equivalent of watching the odometer flip over to 99,999. If you know, you know. We had quite a bumper crop of coolness this week, which strangely included two artifacts from ancient Rome: a nanotech goblet of colloidal gold and silver, and a perplexing dodecahedron that ends up having a very prosaic explanation — probably. We talked about a weird antenna that also defies easy description, saw a mouse turned into the world’s worst camera, and learned how 3D-printed signs are a whole lot easier than neon, and not half bad looking either. As always, we found time to talk about space, like the legacy of Ingenuity and whatever became of inflatable space habitats. Back on Earth, there’s DIY flux, shorts that walk you up the mountain, and more about USB-C than you could ever want to know.

And don’t forget that to celebrate Episode 256 next week, we’ll be doing a special AMA segment where we’ll get all the regular podcast crew together to answer your questions about life, the universe, and everything. If you’ve got a burning question for Elliot, Tom, Kristina, Al, or Dan, put it down in the comment section and we’ll do our best to extinguish it.

 

Grab a copy for yourself if you want to listen offline.

Continue reading “Hackaday Podcast Episode 255: Balloon On The Moon, Nanotech Goblets, And USB All The Way”

Need A Serial Data Plotter? Better Write Your Own

When you’re working with a development team, especially in a supporting capacity, you can often find yourself having to invent tools and support systems that are fairly involved, but don’t add to the system’s functionality. Still, without them, it’d be a dead duck. [Aidan Chandra] was clearly in a similar situation, working with a bunch of postgrads at Stanford, on an exoskeleton project, and needed an accurate data plotter to watch measurements in real-time.

This particular problem has been solved many times over, but [Aidan] laments that many solutions available seem to be too complex, hard to extend, or just have broken dependencies. This happens a lot, and it simply leads to yet another project to get going, before you can do the real work it supports. Based on Python and PyQT5, serial-plotter is a new beginning, with an emphasis on correct data acquisition and real-time data visualization with a little processing thrown in. Think, acquire data, show the raw values as well as the mean value, and RMS noise all on the same windows side-by-side, all of which is easily tweakable with a bit of programming using Numpy and Matplotlib.

One particularly important point to highlight is that of the handling of time-stamping. [Aidan] needed to ensure samples were logged together with a local MCU timestamp so that when displayed and possibly later post-processed, it was possible to accurately determine when a particular value or event occurred. With the amount of buffering, data loss and multiple-thread shenanigans, it is easy to forget that the data might get to the application in a non-deterministic way, and just relying on local CPU time is not so useful.

If you need to visualize data transported over the serial port, we have seen many projects to help. Like the highly configurable Serial Studio, for one. If your needs are a bit more complex, especially with multiple data transport methods, then a Supercon 2022 talk by [Alex Whittemore] might be a jolly good place to start.

No Dish? Try A Portable Weave Helix Antenna

When you think of satellite communications, you probably think of a dish. But that’s not the only option — a new device from the American University of Beruit and Stanford created a portable antenna made of woven materials that packs easily, weighs little, and can reconfigure for ground-to-space or ground-to-ground communications. The antenna reminded us of a finger trap and you can see it for yourself in the video below.

Because of the antenna’s construction, it can fold up and also adjust to different lengths for different purposes. The antenna collapses to a ring that is five inches across and 1 inch tall. The weight? Under two ounces. The actual paper in Nature Communications is available to read online.

Stretched out to about a foot, the antenna is omnidirectional. The size, of course, also changes the resonant frequency. Tuning is no problem, though, since you can easily change the size as needed. The antenna may also find use on satellites where it’s low weight, and compact storage would be a definite advantage.

The antenna’s weave is actually two separate helixes, one conductive and the other insulating. The antenna normally operates in a vertical configuration. It looks like it might be simple to make some version of this without anything exotic. Let us know if you try!

Helical antennas aren’t new, but this is an unusual construction. They are popular as satellite antennas because of their polarization characteristics among other things.

Continue reading “No Dish? Try A Portable Weave Helix Antenna”

Wearable Robot Makes Mountain Climbing A Breeze For Seniors

You know, it’s just not fair. It seems that even if we stay active, age will eventually get the better of our muscles, robbing them of strength and our bodies of mobility. Canes and walkers do not provide additional strength, just support and reassurance in a treacherous landscape. What people could really benefit from are wearable robots that are able to compensate for a lack of muscle strength.

[Dr. Lee Jongwon] of the Korea Institute of Science and Technology has developed this very thing. MOONWALK-Omni is designed to “actively support leg strength in any direction”, and make one feel like they are walking on the moon. In order to test the wearable robot, [Dr. Jongwon] invited senior citizens to climb Korea’s Mount Yeongbong, which is some 604 meters (1980 feet) above sea level.

The robot weighs just 2 kg (about 4.5 lbs) and can be donned independently by the average adult in under ten seconds. There are four high-powered but ultra lightweight actuators on either side of the pelvis that aid balance and boost leg strength by up to 30%. This is all designed to increase propulsion.

An AI system works to analyze the wearer’s gait in real time in order to provide up-to-the-second effective muscle support in many different environments. One wearer, a formerly active mountain climber, reported feeling 10-20 years younger when reaching the top of Mount Yeongbong.

It’s quite interesting to see mobility robots outside of the simplicity of the rehabilitation setting. We have to wonder about the battery life. Will everyone over 65 be wearing these someday? We can only hope they become so affordable. In the meantime, here’s a wearable robot that travels all over your person for better telemetry.

Reviving A Sensorless X-Ray Cabinet With Analog Film

In the same way that a doctor often needs to take a non-destructive look inside a patient to diagnose a problem, those who seek to reverse engineer electronic systems can greatly benefit from the power of X-ray vision. The trouble is that X-ray cabinets designed for electronics are hideously expensive, even on the secondary market. Unless, of course, their sensors are kaput, in which case they’re not of much use. Or are they?

[Aleksandar Nikolic] and [Travis Goodspeed] strongly disagree, to the point that they dedicated a lot of work documenting how they capture X-ray images on plain old analog film. Of course, this is nothing new — [Wilhelm Konrad Roentgen] showed that photographic emulsions are sensitive to “X-light” all the way back in the 1890s, and film was the de facto image sensor for radiography up until the turn of this century. But CMOS sensors have muscled their way into film’s turf, to the point where traditional silver nitrate emulsions and wet processing of radiographic films, clinical and otherwise, are nearly things of the past. Continue reading “Reviving A Sensorless X-Ray Cabinet With Analog Film”