Could Solar-Powered Airships Offer Cleaner Travel?

The blimp, the airship, the dirigible. Whatever you call them, you probably don’t find yourself thinking about them too often. They were an easy way to get airborne, predating the invention of the airplane by decades. And yet, they suffered—they were too slow, too cumbersome, and often too dangerous to compete once conventional planes hit the scene.

And yet! Here you are reading about airships once more, because some people aren’t giving up on this most hilarious manner of air travel. Yes, it’s 2024, and airship projects continue apace even in the face of the overwhelming superiority of the airplane.

Continue reading “Could Solar-Powered Airships Offer Cleaner Travel?”

Learn Sailing Mechanics Without Leaving Dry Land

The ancient art of sailing can be very intimidating for the uninitiated given the shifty nature of wind. To help understand the interaction of wind direction and board orientation, [KifS] designed a hands-on sailing demonstrator that lets students grasp the basics before setting foot on a real sailboat.

The demonstrator uses a potentiometer as a tiller to control a model sailboat’s angle, while another stepper motor adjusts the position of a fan to simulate changing wind directions. With an Arduino Uno controlling everything, this setup affords students the opportunity to learn about sail positioning and adjusting to shifting winds in an interactive way, without the pressures and variables of being on the water.

[KifS]’s creation isn’t just about static demonstrations. It features four modes that progressively challenge learners—from simply getting a feel for the tiller, to adjusting sails with dynamic wind changes, even adding a game element that introduces random wind movements demanding quick adjustments. [KifS] mentions there are potentials aspects that can be refined, like more realistic sail response and usability, but it already achieved the main project goals.

There are a myriad of potential ways to add new tech to the ancient art of sailing. We’ve seen a DIY autopilot system, full sensor arrays, and an open source chart plotter. It’s even been proven you can have a wind powered land vehicle that travels faster than the wind.

A black plastic trim piece from a vehicle interior. It has slight flecking in its texture. It is sitting on an off-white bench overlooking a workshop.

Can Car Parts Grow On Trees?

Cars don’t grow on trees, but Ford is designing car parts from olive tree cuttings. [via Electrek]

Ford is no stranger to designing parts from plants for their vehicles. Henry famously liked to beat on the Soy Bean Car with a blunted axe to tout the benefits of bioplastic panels. Researchers at Ford’s Cologne, Germany facility have detailed their work to use waste from olive orchards as part of a new biocomposite from the LIVE COMPOLIVE program.

Fibers from the olive tree cuttings are mixed with recycled plastic and injection molded to form panels. The video below features interior panels that are currently made with traditional plastics that could be swapped over to the new composite. Since these cuttings are a waste product from food production, there isn’t the tension akin to that presented via biofuels vs food. We’re curious what Precious Plastics could do with this, especially if the fibers are able to reinforce the matrix.

If you want to see some other unusual uses for waste wood, why not checkout a “paper” bottle or 3D printing with sawdust?

Continue reading “Can Car Parts Grow On Trees?”

Fan With Automatic Door Is Perfect For Camper Vans

Ventilation fans are useful for clearing stuffy or stale air out of a space. However, they also tend to act as a gaping hole into said space. In the case of caravans and RVs, an open ventilation fan can be terrible for keeping the interior  space warm, quiet, and free from dust. “Blast doors” or fan blocks are a common way to solve this problem. [Raphtronic] whipped up a duly-equipped ventilation fan to do just that.

The solution was to create a fan setup with a custom fan holder and a sliding door to block airflow when necessary. [Raphtronic] designed a fan frame for this purpose using parts 3D printed in ASA plastic. This material was chosen such that they could readily withstand the 50 C (120 F) temperatures typical in his Ford Transit camper during the summer. A simple 12 V ventilation fan was then fitted to the frame, along with a sliding door controlled by a 12 V linear actuator.

The mode of operation is simple. A DPDT switch controls the linear actuator. Flipped one way, the linear actuator is fed 12 V in such a polarity as to move it to open the fan door. In this mode, 12 volts is also supplied to the fan to start ventilation. When the switch is flipped the other way, the actuator moves to the closed position, and a diode in the circuit stops the fan spinning backwards. As a bonus, limit switches are built into the linear actuator, so there’s no need for any microcontrollers, “off” switch positions, or additional wiring.

It’s a tidy solution to the problem of ventilating a camper in a clean and effective manner. Files are on GitHub for those wishing to build their own. We’ve seen some great work in this area before, like this off-grid van project that made excellent use of 3D scanning during the build process. If you’ve designed and built your own nifty camping gear, don’t hesitate to drop us a line!

Sun On The Run: Diving Into Solar With A Mobile PV System

For obvious reasons, there has been a lot of interest in small-scale residential solar power systems lately. Even in my neck of the woods, where the sun doesn’t shine much from October to April, solar arrays are sprouting up on rooftops in a lot of local neighborhoods. And it’s not just here in suburbia; drive a little way out into the country or spend some time looking around in Google maps and it won’t take long to spy a sizable array of PV panels sitting in a field next to someone’s ranch house or barn.

Solar has gotten to the point where the expense of an installation is no longer a serious barrier to entry, at least if you’re willing to put in a little sweat equity and not farm the project out to a contractor. Doing it yourself requires some specialized tools and knowledge, though, over and above your standard suite of DIY skills. So, in the spirit of sharing hard-won knowledge, I decided to take the somewhat unusual step of writing up one of my personal projects, which has been in progress for a couple of years now and resulted in a solar power system that isn’t on a rooftop or a ground-mounted array at all, but rather is completely mobile: my solar trailer.

Continue reading “Sun On The Run: Diving Into Solar With A Mobile PV System”

USB-C PD: New Technology Done Right

There is a tendency as we get older, to retreat into an instinctive suspicion of anything new or associated with young people. All of us will know older people who have fallen down this rabbit hole, and certainly anything to do with technological advancement is often high on their list of ills which beset society. There’s a Douglas Adams passage which sums it up nicely:

“I’ve come up with a set of rules that describe our reactions to technologies:
1. Anything that is in the world when you’re born is normal and ordinary and is just a natural part of the way the world works.
2. Anything that’s invented between when you’re fifteen and thirty-five is new and exciting and revolutionary and you can probably get a career in it.
3. Anything invented after you’re thirty-five is against the natural order of things.”

Here at Hackaday we’re just like anybody else, in that we all get older. Our lives are devoted to an insatiable appetite for new technology, but are we susceptible to the same trap, and could we see something as against the antural order of things simply because we don’t like it? It’s something that has been on my mind in some way since I wrote a piece back in 2020 railing at the ridiculous overuse of new technologies to limit the lifespan and repairability of new cars and then a manifesto for how the industry might fix it, am I railing against it simply because I can’t fix it with a screwdriver in the way I could my 1960 Triumph Herald? I don’t think so, and to demonstrate why I’d like to talk about another piece of complex new technology that has got everything right.

In 2017 I lamented the lack of a universal low voltage DC power socket that was useful, but reading the piece here in 2024 it’s very obvious that in the years since my quest has been solved. USB Power Delivery was a standard back then, but hadn’t made the jump to the ubiquity the USB-C-based power plug and socket enjoys today. Most laptops still had proprietary barrel jack connectors, and there were still plenty of phones with micro-USB sockets. In the years since it’s become the go-to power standard, and there are a huge number of modules and devices to supply and receive it at pretty high power.

At first sight though, it might seem as though USB-PD is simply putting a piece of unnecessary technology in the way of what should be a simple DC connector. Each and every USB-PD connection requires some kind of chip to manage it, to negotiate the connection, and to transform voltage. Isn’t that the same as the cars, using extra technology merely for the sake of complexity? On the face of it you might think so, but the beauty lies in it being a universally accepted standard. If car manufacturers needed the same functionalty you’d have modules doing similar things in a Toyota, a Ford, or a Renault, but they would all be proprietary and they’d be eye-wateringly expensive to replace. Meanwhile USB-PD modules have to work with each other, so they have become a universal component available for not a huge cost. I have several bags of assorted modules in a box of parts here, and no doubt you do too. The significant complexity of the USB-PD endpoint doesn’t matter any more, because should it break then replacing it is an easy and cheap process.

This is not to say that USB-PD is without its problems though, the plethora of different cable standards is its Achilies’ heel. But if you’re every accused of a knee-jerk reaction to a bad piece of new technology simply because it’s new, point them to it as perhaps the perfect example of the responsible use of new technology.

Decoding A ROM From A Picture Of The Chip

Before there were home computers, among the hottest pieces of consumer technology to own was a pocket calculator. In the early 1970s a series of exciting new chips appeared which allowed the impossible to become the affordable, and suddenly anyone with a bit of cash could have one.

Perhaps one of the more common series of chips came from Texas instruments, and it’s one of these from which [Veniamin Ilmer] has retrieved the ROM contents. In a way there’s nothing new here as the code is well known, it’s the way it was done which is of interest. A photo of the die was analysed, and with a bit of detective work the code could be deduced merely from the picture.

These chips were dedicated calculators, but under the hood they were simple pre-programmed microcontrollers. Identifying the ROM area of the chip was thus relatively straightforward, but some more detective work lay in getting to the bottom of how it could be decoded before the code could be verified. So yes, it’s possible to read code from an early 1970s chip by looking at a photograph.

A very similar chip to this one was famously reprogrammed with scientific functions to form the heart of the inexpensive Sinclair Cambridge Scientific.