How A DIY Chicken Coop Door Opener Went From Simple To Complex

How hard could it be to make a chicken coop door that can be configured to open and close automatically using a straightforward interface? That’s the question that [Jeff Sandberg] set out with, after three years of using a more basic off-the-shelf unit that offered no remote access nor a convenient user interface. The use case for [Jeff] was rather straightforward: the door would be open during the day and closed at night to keep the hens safely inside the coop.

The commercial solution offered an RTC-backed programmable interface as well as a light sensor, but the latter wasn’t always reliable in inclement weather and making simple changes to the programming when e.g. the hens had to stay inside a day due to work on the yard, was much more complicated than needed, plus had to be done on the spot. The new system would solve all these ills.

That said, the existing door mechanism was doing a fine job and could be kept. This just left making a new box with electronics to control it, starting with an ESP32C3 with the ESPHome firmware that is hooked into the local Home Assistant system, along with a motor to lift and lower the door and with magnetic contact sensors.

So far so easy. The hard part came with the installation, which involved trenching to the hen house for mains power, repairing the damage from this, and troubleshooting a power issue that turned out to be due to a dodgy power adapter. The payoff is that now the chicken coop is also part of the smart home and their owner never has to trudge through a soggy garden again to adjust the programming on a dim LC display with far too few buttons.

Mousa rotary dial and circuit

Adapting An Old Rotary Dial For Digital Applications

Today in old school nostalgia our tipster [Clint Jay] wrote in to let us know about this rotary dial.

If you’re a young whippersnapper you might never have seen a rotary dial. These things were commonly used on telephones back in the day, and they were notoriously slow to use. The way they work is that they generate a number of pulses corresponding to the number you want to dial in. One pulse for 1, two pulses for 2, and so on, up to nine pulses for 9, then ten pulses for 0.

We see circuits like this here at Hackaday from time to time. In fact, commonly we see them implemented as USB keyboards, such as in Rotary Dial Becomes USB Keyboard and Rotary Dialer Becomes Numeric Keypad.

Continue reading “Adapting An Old Rotary Dial For Digital Applications”

Taking A One Handed Keyboard To The Next Level

When a wrist mounted keyboard floated past in the Hackaday feed, a mental image surfaced, perhaps something like a Blackberry keyboard mounted on a wrist cuff, maybe with some kind of display. It’s impressive indeed then to open the link and see [AdamLeBlanc]’s Schist01. It’s a wrist mounted keyboard, but with its bracket curving in front of the had to support a custom ergonomic chording keyboard, it’s definitely a break from the norm.

The wrist mount has clearly taken a lot of thought, and despite looking something like the arm of a Star Trek Borg, appears comfortable. It’s extremely adjustable, and can be demounted into several different parts. Meanwhile the keyboard itself has been formed to his hand by a trial and error process involving keycaps and a clay model. there’s even a thumb-operable touchpad.

We like this peripheral a lot, for the huge attention to detail that has gone into its design, for its boldness, and because we can’t help seeing ourselves using it as the input device for a futuristic head-mounted display. For now though we don’t have any futuristic silver clothing in the wardrobe, so that will have to wait. If you’d like to see more, there’s a video.

Continue reading “Taking A One Handed Keyboard To The Next Level”

This Week In Security: The Localhost Bypass, Reflections, And X

Facebook and Yandex have been caught performing user-hostile tracking. This sort of makes today just another Friday, but this is a bit special. This time, it’s Local Mess. OK, it’s an attack with a dorky name, but very clever. The short explanation is that web sites can open connections to localhost. And on Android, apps can be listening to those ports, allowing web pages to talk to apps.

That may not sound too terrible, but there’s a couple things to be aware of. First, Android (and iOS) apps are sandboxed — intentionally making it difficult for one app to talk to another, except in ways approved by the OS maker. The browser is similarly sandboxed away from the apps. This is a security boundary, but it is especially an important security boundary when the user is in incognito mode.

The tracking Pixel is important to explain here. This is a snippet of code, that puts an invisible image on a website, and as a result allows the tracker to run JavaScript in your browser in the context of that site. Facebook is famous for this, but is not the only advertising service that tracks users in this way. If you’ve searched for an item on one site, and then suddenly been bombarded with ads for that item on other sites, you’ve been tracked by the pixel.

This is most useful when a user is logged in, but on a mobile device, the user is much more likely to be logged in on an app and not the browser. The constant pressure for more and better data led to a novel and completely unethical solution. On Android, applications with permission to access the Internet can listen on localhost (127.0.0.1) on unprivileged ports, those above 1024.

Facebook abused this quirk by opening a WebRTC connection to localhost, to one of the ports the Facebook app was listening on. This triggers an SDP connection to localhost, which starts by sending a STUN packet, a UDP tool for NAT traversal. Packed into that STUN packet is the contents of a Facebook Cookie, which the Facebook app happily forwards up to Facebook. The browser also sends that cookie to Facebook when loading the pixel, and boom Facebook knows what website you’re on. Even if you’re not logged in, or incognito mode is turned on.

Yandex has been doing something similar since 2017, though with a different, simpler mechanism. Rather than call localhost directly, Yandex just sets aside yandexmetrica.com for this purpose, with the domain pointing to 127.0.0.1. This was just used to open an HTTP connection to the native Yandex apps, which passed the data up to Yandex over HTTPS. Meta apps were first seen using this trick in September 2024, though it’s very possible it was in use earlier.

Both companies have ceased since this report was released. What’s interesting is that this is a flagrant violation of GDPR and CCPA, and will likely lead to record-setting fines, at least for Facebook.

Continue reading “This Week In Security: The Localhost Bypass, Reflections, And X”

Build a $35 400 MHz Logic Analyzer

Build A 400 MHz Logic Analyzer For $35

What do you do when you’re a starving student and you need a 400 MHz logic analyzer for your digital circuit investigations? As [nanofix] shows in a recent video, you find one that’s available as an open hardware project and build it yourself.

The project, aptly named LogicAnalyzer was developed by [Dr. Gusman] a few years back, and has actually graced these pages in the past. In the video below, [nanofix] concentrates on the mechanics of actually putting the board together with a focus on soldering. The back of the build is the Raspberry Pi Pico 2 and the TXU0104 level shifters.

If you’d like to follow along at home, all the build instructions and design files are  available on GitHub. For your convenience the Gerber files have been shared at PCBWay

Of course we have heaps of material here at Hackaday covering logic analyzers. If you’re interested in budget options check out $13 Scope And Logic Analyzer Hits 18 Msps or how to build one using a ZX Spectrum! If you’re just getting started with logic analyzers (or if you’re not sure why you should) check out Logic Analyzers: Tapping Into Raspberry Pi Secrets.

Continue reading “Build A 400 MHz Logic Analyzer For $35”

Simple Open Source Photobioreactor

[Bhuvanmakes] says that he has the simplest open source photobioreactor. Is it? Since it is the only photobioreactor we are aware of, we’ll assume that it is. According to the post, other designs are either difficult to recreate since they require PC boards, sensors, and significant coding.

This project uses no microcontroller, so it has no coding. It also has no sensors. The device is essentially an acrylic tube with an air pump and some LEDs.

Continue reading “Simple Open Source Photobioreactor”

COTS Components Combine To DIY Solar Power Station

They’re marketed as “Solar Generators” or “Solar Power Stations” but what they are is a nice box with a battery, charge controller, and inverter inside. [DoItYourselfDad] on Youtube decided that since all of those parts are available separately, he could put one together himself.

The project is a nice simple job for a weekend afternoon. (He claims 2 hours.) Because it’s all COTS components, it just a matter of wiring everything together, and sticking into a box.  [DoItYourselfDad] walks his viewers through this process very clearly, including installing a shunt to monitor the battery. (This is the kind of video you could send to your brother-in-law in good conscience.)

Strictly speaking, he didn’t need the shunt, since his fancy LiFePo pack from TimeUSB has one built in with Bluetooth connectivity. Having a dedicated screen is nice, though, as is the ability to charge from wall power or solar, via the two different charge controllers [DoItYourselfDad] includes. If it were our power station, we’d be sure to put in a DC-DC converter for USB-PD functionality, but his use case must be different as he has a 120 V inverter as the only output. That’s the nice thing about doing it yourself, though: you can include all the features you want, and none that you don’t.

We’re not totally sure about his claim that the clear cargo box was chosen because he was inspired by late-90s Macintosh computers, but it’s a perfectly usable case, and the build quality is probably as good as the cheapest options on TEMU.

This project is simple, but it does the job. Have you made a more sophisticated battery box, or other more-impressive project? Don’t cast shade on [DoItYourselfDad]: cast light on your work by letting us know about it!. Continue reading “COTS Components Combine To DIY Solar Power Station”