Mining And Refining: Mine Dewatering

From space, the most striking feature of our Pale Blue Dot is exactly what makes it blue: all that water. About three-quarters of the globe is covered with liquid water, and our atmosphere is a thick gaseous soup laden with water vapor. Almost everywhere you look there’s water, and even where there’s no obvious surface water, chances are good that more water than you could use in a lifetime lies just below your feet, and accessing it could be as easy as an afternoon’s work with a shovel.

And therein lies the rub for those who delve into the Earth’s depths for the minerals and other resources we need to function as a society — if you dig deep enough, water is going to become a problem. The Earth’s crust holds something like 44 million cubic kilometers of largely hidden water, and it doesn’t take much to release it from the geological structures holding it back and restricting its flow. One simple mineshaft chasing a coal seam or a shaft dug in the wrong place, and suddenly all the hard-won workings are nothing but flooded holes in the ground. Add to that the enormous open-pit mines dotting the surface of the planet that resemble nothing so much as empty lakes waiting to fill back up with water if given a chance, and the scale of the problem water presents to mining operations becomes clear.

Dewatering mines is a complex engineering problem, one that intersects and overlaps multiple fields of expertise. Geotechnical engineers work alongside mining engineers, hydrogeologists, and environmental engineers to devise cost-effective ways to control the flow of water into mines, redirect it when they can, and remove it when there’s no alternative.

Continue reading “Mining And Refining: Mine Dewatering”

Lathe Outfitted With Electronic Gearbox

Running a metal lathe is not for the faint of heart. Without proper knowledge and preparation, these machines can quickly cause injury or destroy expensive stock, tools, or parts. The other major problem even for those with knowledge and preparedness is that some of their more niche capabilities, like cutting threads with a lead screw, can be tedious and complicated thanks to the change gear system found on some lathes. While these are useful tools for getting things done, [Not An Engineer] decided that there was a better way and got to work building an electronic gearbox to automate the task of the traditional mechanical change gear setup in this video.

What makes change gears so tricky is that they usually come as a set of many gears of different ratios, forcing the lathe operator to figure out the exact combination of gears needed to couple the spindle of the lathe to the feed screw at the precise ratio needed for cutting a specific thread pattern. It is possible to do this task but can be quite a headache. [Not An Engineer] first turned to an Arduino Nano to receive input from a rotary encoder connected to the shaft of the lathe and then instruct a motor to turn the feed screw at a set ratio.

The first major problem was that the Arduino was not nearly fast enough to catch every signal from the encoder, leading to a considerable amount of drift in the output of the motor. That was solved by upgrading to a Teensy 4.1 with a 600 MHz clock speed. There was still one other major hurdle to cross; the problem of controlling the motor smoothly when an odd ratio is selected. [Not An Engineer] used this algorithm to inspire some code, and with that and some custom hardware to attach everything to the lathe he has a working set of electronic change gears that never need to be changed again. And, if you don’t have a lathe at all but are looking to get started with one, you can always build your own from easily-sourced parts.

Continue reading “Lathe Outfitted With Electronic Gearbox”

Hackaday Podcast Episode 288: Cyanotypes, Antique 21-Segment Displays, And The Voynich Manuscript In A New Light

It’s Friday the 13th, and despite having to dodge black cats and poorly located ladders, Elliot and Dan were able to get together and run down the best hacks of the first week of September. Our luck was pretty good, too, seeing how we stumbled upon a coffee table that walks your drink over to you on Strandbeest legs, a potato that takes passable photographs, and a cool LED display three times better than a boring old seven-segment.

If you’ve never heard of the Voynich manuscript, you’re in luck too, because we got a chance to look inside this medieval comic book literally, with multispectral analysis. Is your cruise ship too short? No worries, just lop it in two and add a section. Speaking of cutting things up, that’s what you need to do to see how your plus-size DIY rocket engine performed after test firing.

And finally, it was a sweep for Jenny this week with our “Can’t Miss” articles, where she both pines for a simpler, smaller web experience and wonders what the future holds for biomass fuels.

 

Download the zero-calorie MP3.

Continue reading “Hackaday Podcast Episode 288: Cyanotypes, Antique 21-Segment Displays, And The Voynich Manuscript In A New Light”

Climate Change May Make Days Longer

For those who say there’s never enough time in a day, your wish for more time is getting granted, if ever so slightly. Scientists have now found a new source of our days getting longer — climate change.

You may have already been aware that the length of the day on Earth has been getting longer over time due to the drag exerted on our planet by our friendly neighborhood Moon. Many other factors come into play though, including the Earth’s own mass distribution. As the Earth warms and polar caps melt, the water redistributes to the Earth’s equator causing it to slow more rapidly.

In the worst-case scenario, RCP8.5, it would result in climate-related effects to planetary rotational velocity even larger than those caused by lunar tides. Under that scenario, the earth would probably be a less pleasant place to live in many other ways, but at least you’d have a little more time in your day.

While we’re talking about time, we wonder what ever happened to getting rid of Daylight Savings in the US? If you long for a simpler time, perhaps you should take up repairing mechanical watches and clocks?

Secrets Of The Old Digital Design Titans

Designing combinatorial digital circuits seems like it should be easy. After all, you can do everything you want with just AND, OR, and NOT gates. Bonus points if you have an XOR gate, but you can build everything you need for combinatorial logic with just those three components. If all you want to do is design something to turn on the light when the ignition is on AND door 1 is open OR door 2 is open, you won’t have any problems. However, for more complex scenarios, how we do things has changed several times.

In the old days, you’d just design the tubes or transistor circuits you needed to develop your logic. If you were wiring up everything by hand anyway, you might as well. But then came modules like printed circuit boards. There was a certain economy to having cards that had, say, two NOR gates on a card. Then, you needed to convert all your logic to use NOR gates (or NAND gates, if that’s what you had).

Small-scale ICs changed that. It was easy to put a mix of gates on a card, although there was still some slight advantage to having cards full of the same kind of gate. Then came logic devices, which would eventually become FPGAs. They tend to have many of one kind of “cell” with plenty of logic gates on board, but not necessarily the ones you need. However, by that time, you could just tell a computer program what you wanted, and it would do the heavy lifting. That was a luxury early designers didn’t have. Continue reading “Secrets Of The Old Digital Design Titans”

The Flash Memory Lifespan Question: Why QLC May Be NAND Flash’s Swan Song

The late 1990s saw the widespread introduction of solid-state storage based around NAND Flash. Ranging from memory cards for portable devices to storage for desktops and laptops, the data storage future was prophesied to rid us of the shackles of magnetic storage that had held us down until then. As solid-state drives (SSDs) took off in the consumer market, there were those who confidently knew that before long everyone would be using SSDs and hard-disk drives (HDDs) would be relegated to the dust bin of history as the price per gigabyte and general performance of SSDs would just be too competitive.

Fast-forward a number of years, and we are now in a timeline where people are modifying SSDs to have less storage space, just so that their performance and lifespan are less terrible. The reason for this is that by now NAND Flash has hit a number of limits that prevent it from further scaling density-wise, mostly in terms of its feature size. Workarounds include stacking more layers on top of each other (3D NAND) and increasing the number of voltage levels – and thus bits – within an individual cell. Although this has boosted the storage capacity, the transition from single-level cell (SLC) to multi-level (MLC) and today’s TLC and QLC NAND Flash have come at severe penalties, mostly in the form of limited write cycles and much reduced transfer speeds.

So how did we get here, and is there life beyond QLC NAND Flash?

Continue reading “The Flash Memory Lifespan Question: Why QLC May Be NAND Flash’s Swan Song”

Tell Time And Predict The Heavens With This Astronomical Timepiece

Looking for a new project, or just want to admire some serious mechanical intricacy? Check out [illusionmanager]’s Astronomical Clock which not only tells time, but shows the the positions of the planets in our solar system, the times of sunrise and sunset, the phases of the moon, and more — including solar and lunar eclipses.

One might assume that the inside of the Astronomical Clock is stuffed with a considerable number of custom gears, but this is not so. The clock’s workings rely on a series of tabs on movable rings that interact with each other to allow careful positioning of each element. After all, intricate results don’t necessarily require complex gearing. The astrolabe, for example, did its work with only a few moving parts.

The Astronomical Clock’s mechanical elements are driven by a single stepper motor, and the only gear is the one that interfaces the motor shaft to the rest of the device. An ESP32-C3 microcontroller takes care of everything else, and every day it updates the position of each element as well as displaying the correct time on the large dial on the base.

The video below shows the clock in operation. Curious its inner workings? You can see the entire construction process from beginning to end, too.

Continue reading “Tell Time And Predict The Heavens With This Astronomical Timepiece”