Solid Tips For Designing Assistive Technology (Or Anything Else, Really)

Do you make things, and have you got almost ten minutes to spare? If not, make the time because this video by [PrintLab] is chock-full of healthy and practical design tips. It’s about effective design of Assistive Technology, but the design concepts extend far beyond that scope.

It’s about making things that are not just functional tools, but objects that are genuinely desirable and meaningful to people’s lives. There are going to be constraints, but constraints aren’t limits on creativity. Heck, some of the best devices are fantastic in their simplicity, like this magnetic spoon.

It’s not just about functionality. Colors, textures, and style are all meaningful — and have never been more accessible.

One item that is particularly applicable in our community is something our own [Jenny List] has talked about: don’t fall into the engineer-saviour trap. The video makes a similar point in that it’s easy and natural to jump straight into your own ideas, but it’s critical not to make assumptions. What works in one’s head may not work in someone’s actual life. The best solutions start with a solid and thorough understanding of an issue, the constraints, and details of people’s real lives.

Another very good point is that designs don’t spring fully-formed from a workbench, so prototype freely using cardboard, models, 3D printing, or whatever else makes sense to you. Don’t be stingy with your prototyping! As long as you’re learning something each time, you’re on the right path.

And when a design is complete? It has the potential to help others, so share it! But sharing and opening your design isn’t just about putting the files online. It’s also about making it as easy as possible for others to recreate, integrate, or modify your work for their own needs. This may mean making clear documentation or guides, optimizing your design for ease of editing, and sharing the rationale behind your design choices to help others can build on your work effectively.

The whole video is excellent, and it’s embedded here just under the page break. Does designing assistive technology appeal to you? If so, then you may be interested in the Make:able challenge which challenges people to design and make a 3D printable product (or prototype) that improves the day-to-day life of someone with a disability, or the elderly. Be bold! You might truly help someone’s life.

Continue reading “Solid Tips For Designing Assistive Technology (Or Anything Else, Really)”

T1 Is A RISC-V Cray

The crux of most supercomputers is the ability to operate on many pieces of data at once — something video cards are good at, too. Enter T1 (short for Torrent-1), a RISC-V vector inspired by the Cray X1 vector machine.

T1 has support for features, including lanes and chaining. The chip contains a version of the Rocket Core for scalar operations, but there’s no official support for using it. The project claims you could easily replace that core with any other RISC-V CPU IP.

Continue reading “T1 Is A RISC-V Cray”

Running Doom On An Apple Lightning To HDMI Adapter

As a general rule of thumb, anything that has some kind of display output and a processor more beefy than an early 90s budget PC can run Doom just fine. As [John] AKA [Nyan Satan] demonstrates in a recent video, this includes running the original Doom on an Apple Lightning to HDMI Adapter. These adapters were required after Apple moved to Lightning from the old 30-pin connector which had dedicated pins for HDMI output.

As the USB 2.0 link used with Lightning does not have the bandwidth for 1080p HDMI, compression was used, requiring a pretty beefy processor in the adapter. Some enterprising people at the time took a hacksaw to one of these adapters to see what’s inside them and figure out the cause of the visual artifacts. Inside is a 400 MHz ARM SoC made by Samsung lovingly named the S5L8747. The 256 MB of RAM is mounted on top of the package, supporting the RAM disk that the firmware is loaded into.

Although designed to only run the Apple-blessed firmware, these adapters are susceptible to the same Checkm8 bootROM exploit, which enables the running of custom code. [John] adapted this exploit to target this adapter, allowing this PoC Doom session to be started. As the link with the connected PC (or Mac) is simply USB 2.0, this presumably means that sending keyboard input and the like is also possible, though the details are somewhat scarce on this aspect.

Continue reading “Running Doom On An Apple Lightning To HDMI Adapter”

A Great Use For AI: Wasting Scammers Time!

We may have found the killer app for AI. Well, actually, British telecom provider O2 has. As The Guardian reports, they have an AI chatbot that acts like a 78-year-old grandmother and receives phone calls. Of course, since the grandmother—Daisy, by name—doesn’t get any real phone calls, anyone calling that number is probably a scammer. Daisy’s specialty? Keeping them tied up on the phone.

While this might just seem like a prank for revenge, it is actually more than that. Scamming people is a numbers game. Most people won’t bite. So, to be successful, scammers have to make lots of calls. Daisy can keep one tied up for around 40 minutes or more.

Continue reading “A Great Use For AI: Wasting Scammers Time!”

Lorentz Cannon Fires Lightning

[Editor’s note: This video disappeared, but it has been archived here. We’re leaving the original links as-were in case they come back up.]

The aptly named [LightingOnDemand] has created a Lorentz cannon that can fire a lightning bolt. Honestly, as you can see in the video below, it looks like something from a bad 1950s science fiction movie. The inspiration was researchers using rockets trailing thin wires to attract lightning.

How does the tiny wire carry that much juice? It doesn’t, really. The wire vaporizes into plasma, and if the pulse is fast enough, the Lorentz force hold the plasma together. The rest is non-trivial high-voltage engineering.

Continue reading “Lorentz Cannon Fires Lightning”

How Do We Deal With Microplastics In The Ocean?

Like the lead paint and asbestos of decades past, microplastics are the new awful contaminant that we really ought to do something about. They’re particularly abundant in the aquatic environment, and that’s not a good thing. While we’ve all seen heartbreaking photos of beaches strewn with water bottles and fishing nets, it’s the invisible threat that keeps environmentalists up at night. We’re talking about microplastics – those tiny fragments that are quietly infiltrating every corner of our oceans.

We’ve dumped billions of tons of plastic waste into our environment, and all that waste breaks down into increasingly smaller particles that never truly disappear. Now, scientists are turning to an unexpected solution to clean up this pollution with the aid of seashells and plants.

Continue reading “How Do We Deal With Microplastics In The Ocean?”

A 36-key monoblock split keyboard with three thumb keys on each side.

Lorem Ipsum 36? Dolor Sit Amet Keyboard!

You know, it’s a tale as old as custom mechanical keyboards. [penkia] couldn’t find any PCBs with 36 keys and Gateron low-profile switch footprints, so they made their own and called it the LoremIpsum36. Isn’t it lovely?

Close-up of the RP2040 sitting flush as can be in the PCB.This baby runs on an RP2040, which sits flush as can be in a cutout in the PCB. This maneuver, along with the LP switches in hard-to-find SK-33 sockets results in quite the thin board.

[penkia] says that despite using a 3 mm tray for added rigidity, the entire thing is thinner than the Nuphy Air60 v2, which is just over half an inch (13.9 mm) thick. For keycaps, [penkia] has used both XVX profile and FKcaps’ LPF.

And yeah, that area in the middle is crying out for something; maybe a trackball or something similar. But [penkia] is satisfied with it as-is for the first version, so we are, too.

Do you like 36-key boards, but prefer curves? Check out the Lapa keyboard, which doubles as a mouse.