PC Floppy Copy Protection: Vault Corporation Prolok

In the 2020s we’re used to software being readily accessible, and often free, whether as-in-beer or as-in-speech. This situation is a surprisingly new one, and in an earlier era of consumer software it was most often an expensive purchase. An anti-piracy industry sprang up as manufacturers tried to protect their products, and it’s one of those companies that [GloriousCow] examines in detail, following their trajectory from an initial success through to an ignominious failure driven by an anti-piracy tech too extreme even for the software industry.

Vault Corporation made a splash in the marketplace with Prolok, a copy protection system for floppies that worked by creating a physically damaged area of the disc which wouldn’t be present on a regular floppy. The write-up goes into detail about the workings of the system, including how to circumvent a Prolok protected title if you find one. This last procedure resulted in a lawsuit between Prolok and Quaid Software, one of the developers of circumvention tools, which established the right of Americans to make backup copies of their owned software.

The downfall of Vault Corporation came with their disastrously misjudged Prolok Plus product, which promised to implant a worm on the hard disks of pirates and delete all their files in an act of punishment. Sensing the huge reputational damage of being tied to such a product the customers stayed away, and the company drifted into obscurity.

For those interested further in the world of copy protection from this era, we’ve previously covered the similar deep dives that [GloriousCow] has done on Softguard’s Superlok as well as the Interlock system from Electronic Arts.

Repairing A Component On A Flex Connector

It used to be you could crack open a TV or radio and really work on the components inside. The smallest thing in there was maybe a disc capacitor a little smaller than your pinky’s nail. Nowadays, consumer electronic boards are full of tiny SMD components. Luckily [StezStix Fix?] has a microscope and the other tools you need. Someone sent him an Amazon Echo Show with a bad touchscreen. Can it be fixed?

The video below shows that it can, but there’s a twist. The bad capacitor was mounted on one of those flexible PCB cables that are so hard to work with. It is hard enough not to damage these when you aren’t trying to remove and replace a component from the surface of the cable.

Continue reading “Repairing A Component On A Flex Connector”

How To Make Conductive Tin Oxide Coatings On Glass

Glass! It’s, uh, not very conductive. And sometimes we like that! But other times, we want glass to be conductive. In that case, you might want to give the glass a very fine coating of tin oxide. [Vik Olliver] has been working on just that, in hopes he can make a conductive spot on a glass printing bed in order to use it with a conductive probe.

[Vik’s] first attempt involved using tin chloride, produced by dissolving some tin in a beaker of hydrochloric acid. A droplet of this fluid was then dropped on a glass slide that was heated with a blowtorch. The result was a big ugly white splotch. Not at all tidy, but it did create a conductive layer on the glass. Just a thick, messy one. Further attempts refined the methodology, and [Vik] was eventually able to coat a 1″ square with a reasonably clear coating that measured an edge-to-edge resistance around 8 megaohms.

If you’re aware of better, easier, ways to put a conductive coating on glass, share them below! We’ve seen similar DIY attempts at this before, too. If you’ve been cooking up your own interesting home chemistry experiments (safely!?) do let us know!

C64 Gets A Graphics Upgrade Courtesy Of Your Favorite Piano Manufacturer

The Commodore 64 was quite a machine in its time, though a modern assessment would say that it’s severely lacking in the graphical department. [Vossi] has whipped up a bit of an upgrade for the C64 and C128, in the form of a graphics expansion card running Yamaha hardware.

As you might expect, the expansion is designed to fit neatly into a C64 cartridge slot. The card runs the Yamaha V9958—the video display processor known for its appearance in the MSX2+ computers. In this case, it’s paired with a healthy 128 kB of video RAM so it can really do its thing. The V9958 has an analog RGB output that can be set for PAL or NTSC operation, and can perform at resolutions up to 512×212 or even 512×424 interlaced. Naturally, it needs to be hooked directly up to a compatible screen, like a 1084, or one with SCART input. [Vossi] took the time to create some demos of the chip’s capabilities, drawing various graphics in a way that the C64 couldn’t readily achieve on its own.

It’s a build that almost feels like its from an alternate universe, where Yamaha decided to whip up a third-party graphics upgrade for the C64. That didn’t happen, but stranger team ups have occurred over the years.

[Thanks to Stephen Walters for the tip!]

Hackaday Podcast Episode 292: Stainless Steel Benchies, Lego Turing Machines, And A Digital Camera Made Of Pure DIY

Here we are in October, improbably enough, and while the leaves start to fall as the goblins begin to gather, Elliot and Dan took a break from the madness to talk about all the wonderful hacks that graced our pages this week. If there was a theme this week, it was long-term projects, like the multiple years one hacker spent going down dead ends in the quest for DIY metal 3D printing. Not to be outdone, another hacker spent seven years building a mirrorless digital camera that looks like a commercial product. And getting a solderless PCB to do the blinkenlight thing took a long time too.

Looking to eliminate stringing in your 3D prints? Then you’ll want to avoid the “pause and attach” approach, which intentionally creates strings in your prints. Wondering if you can 3D print bearings? You can, but you probably shouldn’t unless you have a particular use in mind. And what happens when you have an infinitely large supply of Lego? Why, you build a Turing machine on steroids, of course.

Finally, we take a look at this week’s “Can’t-Miss” articles with a look into plastic recycling and why we can’t have nice things yet, and we take a trip out into orbit and examine the ins and outs of Lagrange points.

And a little mea culpa from the editing desk: Sorry the podcast is coming out late this week. Audacity ate my files. If you’re ever in a similar circumstance, you can probably halfway save your bacon with audacity-project-tools. Ask me how I know.

 

Download the zero-calorie MP3.

Continue reading “Hackaday Podcast Episode 292: Stainless Steel Benchies, Lego Turing Machines, And A Digital Camera Made Of Pure DIY”

The US’s New Nuclear Weapons, Mysterious Fogbanks And Inertial Confinement Fusion

Keeping the United States’ nuclear arsenal ready for use is an ongoing process, one which is necessarily shrouded in complete secrecy. In an article by The War Zone these developments and the secrets behind it are touched upon, including a secret ingredient for these thermonuclear warheads that is only officially known as ‘Fogbank’, but which is very likely aerogel.

As noted by a commentator, this is pretty much confirmed in an article published by Los Alamos National Laboratories (LANL) in the 2nd 2009 issue (PDF) of Nuclear Weapons Journal. On page nine the article on hohlraum-based inertial confinement fusion notes the use of aerogel to tamp the radially inward motion of the wall material, suggesting a similar function within one of these thermonuclear warheads.

The research at the Nuclear Ignition Facility (NIF) over at Lawrence Livermore National Laboratory (LLNL) is directly related to these thermonuclear weapons, as they are based around inertial confinement fusion (ICF), which is what the NIF is set up for to study, including the role of aerogel. ICF is unlikely to ever be used for energy production, as we noted in the past, but makes it possible to study aspects of detonating a thermonuclear weapon that are difficult to simulate and illegal to test with real warheads.

Currently it seems that after decades of merely reusing the Fogbank material in refurbished warheads, new material is now being produced again, with it likely being used in the new W93 warhead and the low-yield W76 and life-extended W76-1 variants. All of which is of course pure conjecture, barring the details getting leaked on the War Thunder forums to settle a dispute on realistic US thermonuclear weapon yields.

This Week In Security: The Internet Archive, Glitching With A Lighter, And Firefox In-the-wild

The Internet Archive has been hacked. This is an ongoing story, but it looks like this started at least as early as September 28, while the site itself was showing a creative message on October 9th, telling visitors they should be watching for their email addresses to show up on Have I Been Pwnd.

There are questions still. The site defacement seems to have included either a subdomain takeover, or a long tail attack resulting from the polyfill takeover. So far my money is on something else as the initial vector, and the polyfill subdomain as essentially a red herring.

Troy Hunt has confirmed that he received 31 million records, loaded them into the HIBP database, and sent out notices to subscribers. The Internet Archive had email addresses, usernames, and bcrypt hashed passwords.

In addition, the Archive has been facing Distributed Denial of Service (DDoS) attacks off and on this week. It’s open question whether the same people are behind the breach, the message, and the DDoS. So far it looks like one group or individual is behind both the breach and vandalism, and another group, SN_BLACKMETA, is behind the DDoS.

Continue reading “This Week In Security: The Internet Archive, Glitching With A Lighter, And Firefox In-the-wild”