Hacking T Cells To Treat Celiac Disease

As there is no cure for celiac disease, people must stick to a gluten free diet to remain symptom-free. While this has become easier in recent years, scientists have found some promising results in mice for disabling the disease. [via ScienceAlert]

Since celiac is an auto-immune disorder, finding ways to alter the immune response to gluten is one area of investigation to alleviate the symptoms of the disease. Using a so-called “inverse vaccine,” researchers “engineered regulatory T cells (eTregs) modified to orthotopically express T cell receptors specific to gluten peptides could quiet gluten-reactive effector T cells.”

The reason these are called “inverse vaccines” is that, unlike a traditional vaccine that turns up the immune response to a given stimuli, this does the opposite. When the scientists tried the technique with transgenic mice, the mice exhibited resistance to the typical effects of the target gluten antigen and a related type on the digestive system. As with much research, there is still a lot of work to do, including testing resistance to other types of gluten and whether there are still long-term deleterious effects on true celiac digestive systems as the transgenic mice only had HLA-DQ2.5 reactivity.

If this sounds vaguely familiar, we covered “inverse vaccines” in more detail previously.

Compound Press Bends, Punches And Cuts Using 3D Printed Plastic

It’s not quite “bend, fold or mutilate” but this project comes close– it actually manufactures a spring clip for [Super Valid Designs] PETAL light system. In the video (embedded below) you’ll see why this tool was needed: by-hand manufacturing worked for the prototype, but really would not scale.

Two examples of the spring in question, embedded in the 3D printed light socket. There’s another pair you can’t see.

The lights themselves might be worthy of a post, being a modular, open source DMX stage lighting rig. Today though we’re looking at how they are manufactured– specifically how one part is manufactured. With these PETAL lights, the lights slot into a base station, which obviously requires a connection of some sort. [Super Valid Designs] opted for a spring connector, which is super valid.

It’s also a pain to work by hand: spring steel needed to be cut to length, hole punched, and bent into the specific shape required. The hand-made springs always needed adjustment after assembly, too, which is no good when people are giving you money for objects. Even when using a tent-pole spring that comes halfway to meeting their requirements, [Super Valid Designs] was not happy with the workflow. Continue reading “Compound Press Bends, Punches And Cuts Using 3D Printed Plastic”

Randomly Generating Atari Games

They say that if you let a million monkeys type on a million typewriters, they will eventually write the works of Shakespeare. While not quite the same thing [bbenchoff] (why does that sound familiar?), spent some computing cycles to generate random data and, via heuristics, find valid Atari 2600 “games” in the data.

As you might expect, the games aren’t going to be things you want to play all day long. In fact, they are more like demos. However, there are a number of interesting programs, considering they were just randomly generated.

Continue reading “Randomly Generating Atari Games”

Network Infrastructure And Demon-Slaying: Virtualization Expands What A Desktop Can Do

The original DOOM is famously portable — any computer made within at least the last two decades, including those in printers, heart monitors, passenger vehicles, and routers is almost guaranteed to have a port of the iconic 1993 shooter. The more modern iterations in the series are a little trickier to port, though. Multi-core processors, discrete graphics cards, and gigabytes of memory are generally needed, and it’ll be a long time before something like an off-the-shelf router has all of these components.

But with a specialized distribution of Debian Linux called Proxmox and a healthy amount of configuration it’s possible to flip this idea on its head: getting a desktop computer capable of playing modern video games to take over the network infrastructure for a LAN instead, all with minimal impact to the overall desktop experience. In effect, it’s possible to have a router that can not only play DOOM but play 2020’s DOOM Eternal, likely with hardware most of us already have on hand.

The key that makes a setup like this work is virtualization. Although modern software makes it seem otherwise, not every piece of software needs an eight-core processor and 32 GB of memory. With that in mind, virtualization software splits modern multi-core processors into groups which can act as if they are independent computers. These virtual computers or virtual machines (VMs) can directly utilize not only groups or single processor cores independently, but reserved portions of memory as well as other hardware like peripherals and disk drives.

Proxmox itself is a version of Debian with a number of tools available that streamline this process, and it installs on PCs in essentially the same way as any other Linux distribution would. Once installed, tools like LXC for containerization, KVM for full-fledged virtual machines, and an intuitive web interface are easily accessed by the user to allow containers and VMs to be quickly set up, deployed, backed up, removed, and even sent to other Proxmox installations. Continue reading “Network Infrastructure And Demon-Slaying: Virtualization Expands What A Desktop Can Do”

This Relay Computer Has Magnetic Tape Storage

Magnetic tape storage is something many of us will associate with 8-bit microcomputers or 1960s mainframe computers, but it still has a place in the modern data center for long-term backups. It’s likely not to be the first storage tech that would spring to mind when considering a relay computer, but that’s just what [DiPDoT] has done by giving his machine tape storage.

We like this hack, in particular because it’s synchronous. Where the cassette storage of old just had the data stream, this one uses both channels of a stereo cassette deck, one for clock and the other data. It’s encoded as a sequence of tones, which are amplified at playback (by a tube amp, of course) to drive a rectifier which fires the relay.

On the record side the tones are made by an Arduino, something which we fully understand but at the same time can’t help wondering whether something electromechanical could be used instead. Either way, it works well enough to fill a relay shift register with each byte, which can then be transferred to the memory. It’s detailed in a series of videos, the first of which we’ve paced below the break.

If you want more cassette tape goodness, while this may be the slowest, someone else is making a much faster cassette interface. Continue reading “This Relay Computer Has Magnetic Tape Storage”

Reconductoring: Building Tomorrow’s Grid Today

What happens when you build the largest machine in the world, but it’s still not big enough? That’s the situation the North American transmission system, the grid that connects power plants to substations and the distribution system, and which by some measures is the largest machine ever constructed, finds itself in right now. After more than a century of build-out, the towers and wires that stitch together a continent-sized grid aren’t up to the task they were designed for, and that’s a huge problem for a society with a seemingly insatiable need for more electricity.

There are plenty of reasons for this burgeoning demand, including the rapid growth of data centers to support AI and other cloud services and the move to wind and solar energy as the push to decarbonize the grid proceeds. The former introduces massive new loads to the grid with millions of hungry little GPUs, while the latter increases the supply side, as wind and solar plants are often located out of reach of existing transmission lines. Add in the anticipated expansion of the manufacturing base as industry seeks to re-home factories, and the scale of the potential problem only grows.

The bottom line to all this is that the grid needs to grow to support all this growth, and while there is often no other solution than building new transmission lines, that’s not always feasible. Even when it is, the process can take decades. What’s needed is a quick win, a way to increase the capacity of the existing infrastructure without having to build new lines from the ground up. That’s exactly what reconductoring promises, and the way it gets there presents some interesting engineering challenges and opportunities.

Continue reading “Reconductoring: Building Tomorrow’s Grid Today”