Wiimote Controlled Extermination: Dalek-Style

Dalek Build

Convention-goers have likely strolled past a number of Daleks: the aliens drive around the event space, spouting threats of extermination and occasionally slapping folks with a rotating eyestalk. [James Bruton] has been hard at work building this Wii-remote-controlled Dalek with his fellow hackers at the SoMakeIt Hackerspace (you may remember our write-up from earlier this year).

Most Dalek builds seat a driver inside the body at the helm of a salvaged electric wheelchair, where they plunk around using a joystick control and simmer in an increasingly potent aroma. This version started like most, with a wooden structure from plans sourced at Project Dalek. Inside, however, [James] and his crew have tapped into the wheelchair’s motor controller to feed it a PWM signal from an Arduino Shrimp, which is linked to a Raspi. The Pi receives a Bluetooth signal from a Wiimote, and, through their custom Python script, directs the Dalek with ease.

They’re still working on finishing the Dalek’s body, but they’re using some clever tactics to push onward: using a 3D-printer to solve some of the nuanced styling choices. They’ve uploaded a gallery with additional photos on Facebook, and you can watch them goofing around with their creation (losing their balance and nearly exterminating themselves) in a video after the break.

Continue reading “Wiimote Controlled Extermination: Dalek-Style”

Remote Control Anything With A PS3 Controller

back

When looking for a remote control for your next project, you might want to look in your living room. Wii controllers are a hacker’s favorite, but wagging an electronic wand around isn’t the greatest for remote control planes, cars, tanks, and multicopters. What you need for this is dual analog controls, something every playstation since the 90s has included.

[Marcel] created a replacement electronics board for the Sony DualShock 3 controller for just this purpose. With this board, an XBee, and an old controller, it’s easy to add dual analog control and a whole lot of buttons to any project using an XBee receiver.

The replacement board is based on the ATMega328p uC, includes a Lipo charge circuit and power supply, and inputs for the analog sticks and all the button boards inside the DualShock controller.

Yes, we have seen an earlier version of [Marcel]’s project before, but this time he’s added a few new features – the rumble now works and thanks to multiple people unable or unwilling to spin a few boards, [Marcel] has put up an Indiegogo campaign.

Video below.
Continue reading “Remote Control Anything With A PS3 Controller”

Wiimote Controlled RPi Robot

Wiimote RPi Robot

[Brian] has brought together a powerful collection of hardware to build a robot. The end goal is to have a robot that’s controlled by a Wiimote.

The Wiimote communicates over Bluetooth with a Raspberry Pi, which is running a Python script. This script uses the CWiid Python module to communicate with the controller, and [Brian] has detailed instructions on getting the Wiimote working with a RPi. The RPi controls an ATmega based development board over SPI, which drives an h-bridge to control the two DC motors that move the robot.

[Brian]’s code for this could be helpful for anyone looking to control their RPi with a Wiimote. Since Wiimotes and Bluetooth dongles are fairly cheap nowadays, this is a great way to drop in wireless control to any RPi project, or even to control your media center from the couch.

After the break, check out a video of the build in action

Continue reading “Wiimote Controlled RPi Robot”

Wii U To Be Released This Weekend, Wii U GamePad To Be Torn Apart On Workbenches Across The Land

In case you’ve been living under a rock for the past few months, Nintendo will be releasing their next-gen console this weekend. It’s called the Wii U, and one of the most interesting features is the Wii U GamePad – the first controller to feature a full-color video screen right between the analog sticks.

Needless to say, we’re not terribly interested in the Wii U. The GamePad, though, looks perfect for robot controllers, FPV aerial vehicles, and a whole slew of projects that require some remote control.

The hardware for the GamePad is fairly impressive; apart from D pads and analog sticks, the new Wii Controller features a front-facing camera, gyroscope, accelerometer, magnetometer, 6.2 inch 854×480 touchscreen display, and an extension port housing an I2C bus for all your old Wii peripherals.

Other than a stock feature list, we have no idea how the Wii U will be able to transmit video to the GamePad. It might be WiFi, allowing you to connect all your projects to a wireless network and control them without a whole lot of hardware.

We’ll keep you posted on the developments of hacking the Wii U GamePad. Hopefully we’ll all have an awesome remote control by next year.

Wii Nunchuck Controlled Robot Exhibits Rock Solid Balancing

[Willy Wampa] is showing off his self-balancing robot. What strikes us about the build is how well tuned his feedback loop seems to be. In the video after the break you will see that there is absolutely no visible oscillation used to keep its balance.

The parts used are quite easy to obtain. The acrylic mounting plates are his wife’s design and were custom cut through the Pololu service. They were also the source of the gear motors. He’s using a SparkFun IMU with an Arduino and a motor shield. He first posted about the build about a month ago, but the new revision switches to a Pololu motor driver shield which he says works much better, and adds control via a wireless Wii Nunchuck.

The PID loop which gives it that remarkably solid upright stance is from a library written by [Brett Beauregard]. Once again the concept of open source lets us build great things by standing on the shoulders of others.

Continue reading “Wii Nunchuck Controlled Robot Exhibits Rock Solid Balancing”

Controlling A Quadcopter With A Homebrew Remote

When [Matt] started building his multirotor helicopter, he was far too involved with building his craft than worrying about small details like how to actually control his helicopter. Everything worked out in the end, though, thanks to his homebrew RC setup built out of a USB joystick and a few XBees.

After a few initial revisions and a lot of chatting on a multirotor IRC room, [Matt] stumbled across the idea of using pulse-position modulation for his radio control setup.

After a few more revisions, [Matt] settled on using an Arduino Pro Mini for his flight computer, paired with a WiFly module. By putting his multicopter into Ad-hoc mode, he can connect to the copter with his laptop via WiFi and send commands without the need for a second XBee.

Now, whenever [Matt] wants to fly his multicopter, he plugs the WiFly module into his MultiWii board, connects his laptop to the copter, and runs a small Python script. It may not be easier than buying a nice Futaba transmitter, but [Matt] can easily expand his setup as the capabilities of his copter fleet grows.

Video of [Matt]’s copter in flight after the break.

Continue reading “Controlling A Quadcopter With A Homebrew Remote”

The WiiKart, A Wireless Go Kart

Whoops… Looks like we covered this already. My mistake.

In case the name didn’t tip you off, this fun little kart was inspired by MarioKart. The goal was to build a functional go kart that could be controlled via the Nintendo Wiimote. They did a pretty good job and kept it fairly simple too. They designed a frame that vaguely mimics the shape of the carts in the game. The steering is handled by a 4″ stroke linear actuator. This was initially hooked directly to the tie-rod, but they found it to be too slow. Their solution was to put a lever in between the two with a 1to 3 ratio. This made everything much snappier.

Though they were capable of implementing PWM on the motors in their hardware, they opted to stick with full on, full off because of the push-button nature of the controller. The connection and communication are handled with an Arduino and they don’t mention what bluetooth module they use.

You can see in the video below it is fairly responsive and has more than enough power to lug a passenger over some varied terrain.

Continue reading “The WiiKart, A Wireless Go Kart”