Prototype Proves Wii Was Two Gamecubes Taped Together All Along

Say what you will about Nintendo’s little purple lunchbox, the GameCube, but it was home to many delightful experiences from Super Smash Bros. Melee to The Legend of Zelda: Twilight Princess. We now know it was also home to one of the very first Nintendo Wii remotes as well thanks to the recent listing from [Kuriaisu1122] on Yahoo Auctions.

The prototype Wii remote is a wired design and features a proprietary GameCube controller cable. Notable differences include the two buttons toward the bottom are labeled ‘B’ and ‘A’ respectively. This shows that Nintendo always intended to have players hold the remote sideways in order to play Virtual console games. The large white button next to the directional pad is unlabeled, and along the middle are the traditional ‘Start’ and ‘Select’ labels on either side of ‘Home’. However, these all would go through multiple revisions on the way to the final design. Interestingly there is an Ethernet jack at the base used to connect accessories. That connector would eventually become the often maligned “Nunchuk interface”, but what modder wouldn’t have loved it if that Ethernet port had carried on to the final design?

Continue reading “Prototype Proves Wii Was Two Gamecubes Taped Together All Along”

The Incredible Judges Of The Hackaday Prize

The time to enter The Hackaday Prize has ended, but that doesn’t mean we’re done with the world’s greatest hardware competition just yet. Over the past few months, we’ve gotten a sneak peek at over a thousand amazing projects, from Open Hardware to Human Computer Interfaces. This is a contest, though, and to decide the winner, we’re tapping some of the greats in the hardware world to judge these astonishing projects.

Below are just a preview of the judges in this year’s Hackaday Prize. They’ve been busy looking over all of the finalists and on Saturday we’ll announce the winners of the Hackaday Prize at the Hackaday Superconference in Pasadena. This is not an event to be missed — not only are we going to hear some fantastic technical talks from the hardware greats, but we’re also going to see who will walk away with the Grand Prize of $50,000.


Quinn Dunki

The mighty Quinn has been making games for 36 years on platforms ranging from the Apple II to all manner of newfangled things. She currently manages engineering for mobile games at Scopely, and pursues consulting, independent development, mixed-media engineering projects, and writing. Quinn is best known to the Hackaday crowd for Veronica, the 6502 system with everything and the kitchen sink on a backplane. It’s got PS/2, VGA, and Pong in ROM. The build log for Veronica has been an inspiration to many, and served as the basis for numerous homebrew systems. She continues to inspire with her blog, her YouTube Channel, and of course her Hackaday articles.

Eben Upton

In his earlier life, Eben founded two successful mobile game and middleware companies, but right now he’s most famous for founding the Raspberry Pi foundation and serving as the CEO of Raspberry Pi (Trading) LTD. Under his leadership, the Raspberry Pi has grown from some weird looking board with a USB port on one end, HDMI on the other, and a camera stuck in the middle. After months of work, hopes this computer might not be vaporware grew, and now the Raspberry Pi is the best-selling computer ever made (with apologies to the engineers behind the best selling home computer ever made).

Lauren McCarthy

Lauren McCarthy is an artist based in Los Angles and Brooklyn whose work explores systems for being a person and interacting with other people. She is an Assistant Professor at UCLA Design Media Arts, a Sundance Institute Fellow, and was previously a resident at CMU STUDIO for Creative Inquiry, Eyebeam, Autodesk, and more. Lauren’s work has been exhibited internationally, at places such as Ars Electronica, Fotomuseum Winterthur, SIGGRAPH, Onassis Cultural Center, IDFA DocLab, and the Japan Media Arts Festival. She is the creator of p5.js, an open source platform for learning creative expression through code online.

Chris Anderson

From 2001 through 2012, Chris was the Editor in Chief of Wired Magazine, but now he’s the CEO of 3DR and founder of DIY Drones and DIY Robotcars. These Robocar races are held monthly-ish, and have so far proven an ideal platform to teach kids STEM, and have become something like the next generation of BattleBots, only with a few more computer vision algorithms and a few less RC transmitters. In addition to Robocars, Chris is one of the greatest advocates for flying drones, including those of the fixed-wing variety.

 

These are just a few of the amazingly accomplished judges we have lined up to determine the winner of this year’s Hackaday Prize. The winner will be announced on November 3rd at the Hackaday Superconference. If you can’t join us in person, don’t worry. We’re going to be live streaming everything, including the prize ceremony, where one team will walk away with the grand prize of $50,000. It’s not an event to miss.

History Of White LEDs

Compared to incandescent lightbulbs, LEDs produce a lot more lumens per watt of input power — they’re more efficient at producing light.  Of course, that means that incandescent light bulbs are more efficient at producing heat, and as the days get shorter, and the nights get colder, somewhere, someone who took the leap to LED lighting has a furnace that’s working overtime. And that someone might also wonder how we got here: a world lit by esoteric inorganic semiconductors illuminating phosphors.

The fact that diodes emit light under certain conditions has been known for over 100 years; the first light-emitting diode was discovered at Marconi Labs in 1907 in a cat’s whisker detector, the first kind of diode. This discovery was simply a scientific curiosity until another discovery at Texas Instruments revealed infrared light emissions from a tunnel diode constructed from a gallium arsenide substrate. This infrared LED was then patented by TI, and a project began to manufacture these infrared light emitting diodes.

Continue reading “History Of White LEDs”

Supercon Is Sold Out, Join Us On The Live Streams And Chat Rooms

Over the weekend, the last available tickets to the Hackaday Superconference vanished. This will be the fullest, most exciting, hack-packed Supercon ever.

We’ve always had a stunning slate of speakers. It’s hard to objectively say we will top previous years, but yes this collection of talks is an insane concentration of hardware speakers that tops anything we’ve seen before. You can’t look at the schedule without feeling an electric jolt of excitement. The good news is you can still get in on those talks. Bookmark this Hackaday Superconference Live-Stream which begins at 10 am PDT on Saturday, November 3rd.

Of course, talks are only one component of Supercon. The secret sauce has always been the people at the con. If you’re not joining us, we still need you to take part. There is a conference chat on Hackaday.io and all are welcome. Pop in and visit with people at the con, and others around the globe who wish they could have made it in person.

Make sure you’re on the live stream Saturday evening to watch as the Grand Prize is presented on stage during the Hackaday Prize Ceremony. Follow along throughout the weekend on social media with the #Supercon tag. Pop into the chat and ask for updates on badge hacking, the SMD Soldering Challenge, and all of the other shenanigans that make Supercon super. We look forward to seeing hundreds of you in Pasadena starting this Friday, and thousands of you online through out the weekend!

Open Data Cam Combines Camera, GPU, And Neural Network In An Artisanal DIY Cereal Box

The engineers and product designers at [moovel lab] have created the Open Data Cam – an AI camera platform that can identify and count objects as they move through its field of view – along with an open source guide for making your own.

Step one: get out your ruler and utility knife. In this world of ubiquitous 3D-printers they’ve taken a decidedly low-tech approach to the project’s enclosure: a cut, folded, and zip-tied plastic box, with a cardboard frame inside to hold the electronic bits. It’s “splash proof” and certainly cheap to make, but we’re a little worried about cooling and physical protection for the electronics inside, as they’re not exactly cheap and rugged components.

So what’s inside? An Nvidia Jetson TX2 board, a LiPo battery with some charging circuitry, and a standard webcam. The special sauce, however, is the software, which is available on GitHub. [Moovel lab]’s engineers have put together a nice-looking wifi-accessible mobile UI for marking the areas where you’d like the software to identify and tally objects. The actual object detection and identification tasks are performed by the speedy YOLO neural network, a task the Nvidia board’s GPU is of course well suited for.

As the Open Data Cam’s unblinking glass eye gazes upon our urban environments, it will log its observations in an ancient and mysterious language: CSV. It’s up to you, human, to interpret this information and use it for good.

A summary video and build time lapse are embedded after the break.

Continue reading “Open Data Cam Combines Camera, GPU, And Neural Network In An Artisanal DIY Cereal Box”

Seth Molson Is Designing The Future, One Show At A Time

From the banks of levers and steam gauges of 1927’s Metropolis to the multicolored jewels that the crew would knowingly tap on in the original Star Trek, the entertainment industry has always struggled with producing imagery of advanced technology. Whether constrained by budget or imagination, portrayals usually go in one of two directions: they either rely too heavily on contemporary technology, or else they go so far in the opposite direction that it borders on comical.

Seth Molson

But it doesn’t always have to be that way. In fact, when technology is shown properly in film it often serves as inspiration for engineers. The portrayal of facial recognition and gesture control in Minority Report was so well done that it’s still referenced today, nearly 20 years after the film’s release. For all its faults, Star Trek is responsible for a number of “life imitating art” creations; such as early mobile phones bearing an unmistakable resemblance to the flip communicators issued to Starfleet personnel.

So when I saw the exceptional use of 3D printing in the Netflix reboot of Lost in Space, I felt it was something that needed to be pointed out. From the way the crew made use of printed parts to the printer’s control interface, everything felt very real. It took existing technology and pushed it forward in a way that was impressive while still being believable. It was the kind of portrayal of technology that modern tech-savvy audiences deserve.

It left such an impression that we decided to reach out to Seth Molson, the artist behind the user interfaces from Lost in Space, and try to gain a little insight from somebody who is fighting the good fight for technology in media. To learn how he creates his interfaces, the pitfalls he navigates, and how the expectations of the viewer have changed now that we all have a touch screen supercomputer in our pocket.

Continue reading “Seth Molson Is Designing The Future, One Show At A Time”

Creating A 3G Raspberry Pi Smartphone

It’s hard to believe, but the Raspberry Pi has now been around long enough that some of the earliest Pi projects could nearly be considered bonafide vintage hacks at this point. A perfect example are some of the DIY Raspberry Pi smartphone projects that sprung up a few years back. Few of them were terribly practical to begin with, but even if you ignore the performance issues and bulkiness, the bigger problem is they relied on software and cellular hardware that simply isn’t going to cut it today.

Which was exactly the problem [Dylan Radcliffe] ran into when he wanted to create his own Pi smartphone. There was prior art to use as a guide, but the ones he found were limited to 2G cellular networks which no longer exist in his corner of the globe. He’s now taken on the quest to develop his own 3G-capable Pi smartphone, and his early results are looking very promising.

Inside the phone, which he calls the rCrumbl, [Dylan] has crammed a considerable amount of hardware. A Raspberry Pi 3B+ with attached Adafruit touchscreen LCD is the star of the show, but there’s also a Pi camera module, battery charging circuit, and Adafruit FONA 3G modem (which also provides GPS). Powering the device is a 2500 mAh 3.7V battery, which reportedly delivers a respectable 8 to 12 hour runtime.

The case is 3D printed, and [Dylan] says it took a long time to nail down a design that would fit all of his hardware, keep things from shifting around, and still be reasonably slim. Obviously DIY phones like this are never going to be as slim as even the chunkiest of modern smartphones, but the rCrumbl looks fairly reasonable for a portable device. We especially like the row of physical buttons he’s included along the bottom of the screen, which should help with the device’s usability.

Speaking of usability, that’s where [Dylan] still has his work cut out for him. The existing software he’s found won’t work on 3G, so he’s going to have to come up with his own software stack to provide a proper phone interface. As it stands he’s made a call on the rCrumbl using command line tools, but while that might score you some extra geek points at the next hacker meetup, it’s not exactly going to fly for daily use. He mentions he would love to talk to any developers out there that would like to team up on the software side of the project.

We’ve covered one of the 2G Pi smartphones in the past, and of course the ZeroPhone is a very interesting project if you don’t mind the “dumb phone” interface. But if you’re looking for something that’s fairly close to commercial devices in terms of usability, you might just want to roll your own Android phone.