A Thermal Camera With A Vintage Twist

Nowadays we often value the superb design of vintage technology. It is, therefore, laudable when a broken piece of old electronics is given a new purpose. These types of builds are exactly [Martin Mander’s] cup of tea as he confirmed by turning a 1979 Apollo microwave monitor into a thermal camera (video embedded below).

Intrigued by its unique design, [Martin Mander] picked up the original microwave monitor at a secondhand sale, although the device was not exactly in mint condition. Supposedly this type of detector was used to monitor the exposure of personnel to microwave radiation in an industrial environment.

After removing all the guts, he replaced them with a Raspberry Pi Zero W, Adafruit thermal camera, 1.3″ TFT display, and a USB battery pack. It is especially nice that [Martin Mander] was able to mount all the components without relying on 3D prints but instead, he hand-carved some custom panels and brackets from waste plastic.

The software is based on Python and automatically uploads the captured images to an Adafruit.IO dashboard. With 8 x 8 pixels the resolution of the sensor is not great but by using bicubic interpolation he was able to convert it to a 32 x 32 image which was enough to take some interesting pictures of his cat and other household items.

It is also worthwhile to check out some of [Martin Manders] other retro-tech mods like his cassette Pi IoT scroller.

Continue reading “A Thermal Camera With A Vintage Twist”

Measuring UV-C For About $5

Looking to sterilize something? Give it a good blast of the old UV-C. Ultraviolet radiation in the shortest wavelength band breaks down DNA and RNA, so it’s a great way to kill off any nasties that are lurking. But how much UV-C are you using? [Akiba] at Hackerfarm has come up with the NukeMeter, a meter that measures the output of their UV-C sterilizer the NukeBox. It is built around a $2.50 sensor and a $3 Arduino.

Continue reading “Measuring UV-C For About $5”

Quantum Sensor Receives From 0 Hz To 1000 GHz

Although it isn’t that uncommon to have broadband radio coverage in a single device, going from 0 Hz to 1000 GHz with one antenna and receiver is a bit much. But not for the US Army it seems, because they’ve developed a quantum sensor that can cover that range.

The technology uses Rydberg atoms, which are atoms with a highly excited valence electron. They’ve been used for a variety of sensing applications before, such as reading the cosmic microwave background radiation. However, until the Army’s work there has been no quantitative analysis of using them for wide-spectrum communications.

Continue reading “Quantum Sensor Receives From 0 Hz To 1000 GHz”

Where Do You Get Your Neutrons? Neutron Sources For Nuclear Fusion, Science, Medicine, And Industry

All of us probably know what neutrons are, or have at least heard of them back in physics class. Yet these little bundles of quarks are much more than just filler inside an atom’s nucleus. In addition to being an essential part of making matter as stable as it (usually) is, free neutrons can be used in a variety of manners.

From breaking atoms apart (nuclear fission), to changing the composition of atoms by adding neutrons (transmutation), to the use of neutrons in detecting water and inspecting materials, neutrons are an essential tool in the sciences, as well as in medicine and industrial applications. This has meant a lot of development toward the goal of better neutron sources. While nuclear fission is an efficient way to get lots of neutrons, for most applications a more compact and less complicated approach is used, some of which use nuclear fusion instead.

In this article we’ll be taking a look at the many applications of neutron sources, and these neutron sources themselves.

Continue reading “Where Do You Get Your Neutrons? Neutron Sources For Nuclear Fusion, Science, Medicine, And Industry”

The Legacy Of One Of Science’s Brightest Stars: Freeman Dyson

Of the many well-known names in science, few have been as reluctant to stick to one particular field as Freeman John Dyson. Born in the UK in 1923, he showed a great interest in mathematics and related fields even as a child. By the time he was 15 he had won a scholarship at Trinity College, in Cambridge, where he studied mathematics. Though the war forced him to work at the Air Force’s Operational Research Section (ORS), afterwards he would return to Trinity to get his BA in mathematics.

His subsequent career saw him teaching at universities in the UK and US, before eventually ending up at Cornell University, where he joined the Institute for Advanced Study at the invitation of its head, J. Robert Oppenheimer. Here he would meet up with such people as Richard Feynman with whom he would work on quantum electrodynamics.

Beyond mathematics and physics, Dyson would also express great interest in space exploration — with Dyson spheres being well-known — and genetics, both in the context of the first formation of life and in genetic manipulation to improve plants to deal with issues today. He also worked on the famous Project Orion, which used nuclear bombs for propulsion.

In this article we’ll take a look at these and other parts of Mr. Dyson’s legacy, as well as the influence of his works today.

Continue reading “The Legacy Of One Of Science’s Brightest Stars: Freeman Dyson”

Using IR LEDs To Hide In Plain Sight

Getting by without falling under the gaze of surveillance cameras doesn’t seem possible nowadays – from malls to street corners, it’s getting more common for organizations to use surveillance cameras to keep patrons in check. While the freedom of assembly is considered a basic human right in documents such as the US Condition and the Universal Declaration of Human Rights, it is not a right that is respected everywhere in the world. Often times, governments enforcing order will identify individuals using image recognition programs, preventing them from assembling or demonstrating against their government.

Freedom Shield built by engineer [Nick Bild] is an attempt at breaking away from the status quo and giving people a choice on whether they want to be seen or not. The spectrum of radiation visible to humans maxes out around 740nm, allowing the IR waves to remain undetected by normal observers.

The project uses 940nm infrared (IR) LEDs embedded in clothes to overwhelm photo diodes in IR-sensitive cameras used for surveillance. Since the wavelength of the lights are not visible to humans, they don’t obstruct normal behavior, making it an ideal way to hide in plain sight. Of course, using SMD LEDs rather than the larger sizes would also help with making the lights even less visible to the naked eye.

The result doesn’t perfectly obscure your face from cameras, but for a proof-of-concept it’s certainly a example of how to avoid being tracked.

Continue reading “Using IR LEDs To Hide In Plain Sight”

Hackaday Links Column Banner

Hackaday Links: February 23, 2020

If you think your data rates suck, take pity on New Horizons. The space probe, which gave us lovely pictures of the hapless one-time planet Pluto after its 2015 flyby, continued to plunge and explore other, smaller objects in the Kuiper belt. In January of 2019, New Horizons zipped by Kuiper belt object Arrokoth and buffered its findings on the spacecraft’s solid-state data recorders. The probe has been dribbling data back to Earth ever since at the rate of 1 to 2 kilobits per second, and now we have enough of that data to piece together a story of how planets may have formed in the early solar system. The planetary science is fascinating, but for our money, getting a probe to narrowly miss a 35-kilometer long object at a range of 6.5 billion km all while traveling at 51,500 km/h is pretty impressive. And if as expected it takes until September to retrieve all the data from the event at a speed worse than dialup rates, it’ll be worth the wait.

Speaking of space, if you’re at all interested in big data, you might want to consider putting your skills to work in the search for extraterrestrial intelligence. The Berkeley SETI Research Center has been feeding data from the Green Bank Telescope and their Automated Planet Finder into the public archive of Breakthrough Listen, a 10-year, $100 million initiative to scan the million closest stars in our galaxy as well as the 100 nearest galaxies for signs of intelligent life. They’re asking for help to analyze the torrents of data they’re accumulating, specifically by developing software and algorithms to process the data. They’ve set up a site to walk you through the basics and get you started. If you’re handy with Python and have an interest in astronomy, you should check it out.

Staying with the space theme, what’s the best way to get kids interested in space and electronics? Why, by launching a satellite designed to meme its way across the heavens, of course. The Mission for Education and Multimedia Engagement satellite, or MEMESat-1, is being planned for a February 2021 launch. The 1U cubesat will serve as an amateur radio repeater and slow-scan TV (SSTV) beacon that will beam down memes donated to the project and stored on radiation-hardened flash storage. In all seriousness, this seems like a great way to engage the generation that elevated the meme to a modern art form in a STEM project they might otherwise show little interest in.

It looks as though Linux might be getting a big boost as the government of South Korea announced that they’re switching 3.3 million PCs from Windows to Linux. It’s tempting to blame Microsoft’s recent dropping of Windows 7 support for the defenestration, but this sounds like a plan that’s been in the works for a while. No official word on which distro will be selected for the 780 billion won ($655 million) effort, which is said to be driven by ballooning software license costs and a desire to get out from under Microsoft’s thumb.

And finally, in perhaps the ickiest auction ever held, the “Davos Collection” headed to the auction block this week in New York. The items offered were all collected from the 2018 World Economic Forum in Davos, Switzerland, where the world’s elites gather to determine the fate of the 99.999%. Every item in the collection, ranging from utensils and glassware used at the many lavish meals to “sanitary items” disposed of by the billionaires, and even hair and fluid samples swabbed from restrooms, potentially holds a genetic treasure trove in the form of the DNA it takes to be in the elite. Or at least that’s the theory. There’s a whole “Boys from Brazil” vibe here that we find disquieting, and we flatly refuse to see how an auction where a used paper cup is offered for $8,000 went, but if you’d like to virtually browse through the ostensibly valuable trash of oligarchs, check out the auction catalog.