X-37B Spaceplane To Test Power Beaming Technology

Since 2010, the United States military has been operating a pair of small reusable spaceplanes that conduct secretive long-duration flights in low Earth orbit. Now officially operating under the auspices of the newly formed Space Force, the X-37Bs allow the military to conduct in-house research on new hardware and technology with limited involvement from outside agencies. The spaceplane still needs to hitch a ride to space on a commercial rocket like the Atlas V or the Falcon 9, but once it’s separated from the booster, the remainder of the X-37B’s mission is a military affair.

An X-37B being prepared for launch.

So naturally, there’s a lot we don’t know about the USSF-7 mission that launched from Cape Canaveral Air Force Station on May 17th. The duration of the mission and a complete manifest of the experiments aboard are classified, so nobody outside the Department of Defense truly knows what the robotic spacecraft is up to. But from previous missions we know the craft will likely remain in orbit for a minimum of two years, and there’s enough public information to piece together at least some of the investigations it will be conducting.

Certainly one the most interesting among them is an experiment from the U.S. Naval Research Laboratory (NRL) that will study converting solar power into a narrow microwave beam; a concept that has long been considered the key to unlocking the nearly unlimited energy potential offered by an orbital solar array. Even on a smaller scale, a safe and reliable way to transmit power over the air would have many possible applications. For example it could be used to keep unmanned aerial vehicles airborne indefinitely, or provide additional power for electric aircraft as they take-off.

Performing an orbital test of this technology is a serious commitment, and shows that all involved parties must have a fairly high confidence level in the hardware. Unfortunately, there isn’t much public information available about the power beaming experiment currently aboard the X-37B. There’s not even an indication of when it will be performed, much less when we should expect to see any kind of report on how it went. But we can make some educated guesses based on the work that the Naval Research Laboratory has already done in this field.

Continue reading “X-37B Spaceplane To Test Power Beaming Technology”

Radio’s Sordid History Of Being Blamed For Everything

In the surreal world of a pandemic lockdown, we are surrounded by news stories that defy satire. The idea that 5G cellular networks are to blame for the COVID-19 outbreak and a myriad other ills has the more paranoid corners of social media abuzz with concerned citizens leaping upon random pieces of street furniture as potential 5G infrastructure.

The unanimous advice of the world’s scientists, doctors, and engineers that it is inconceivable for a phone technology to cause a viral outbreak. Amusingly, 5G has not yet been rolled out to some of the places where this is happening. But with conspiracy theory, fact denial only serves to reinforce the idea, however misguided. Here at Hackaday we have already ventured into the technical and scientific side of the story, but there is another side to it that leaves the pandemic behind and reaches back over the decades. Fear of new technology and in particular radio is nothing new, it stretches back almost as long as the public has had access to it.

Continue reading “Radio’s Sordid History Of Being Blamed For Everything”

Don’t Worry, This Box Will Protect You From 5G!

As part of an investigation into opposition to 5G mobile phone networks in the English town of Glastonbury the BBC reporter [Rory Cellan-Jones] shared details of a so-called 5G protection device that was advertised as casting a bubble of 5G-free space around its owner. This set [The Quackometer] writing, because as part of his probing into the world of snake-oil, he’s bought just such a unit and subjected it to a teardown.

What he has is a plastic project box with a graphic on top, a switch and green LED on the side, and a battery compartment on its rear. Opening the battery compartment reveals a standard 9 V alkaline cell, but the real interest comes when the cover is removed. There is a copper cylinder with a coil of wire round it, though the wires from the coil to the battery have been cut. The active part of the device is simply a battery powering an LED through a switch, as he puts it the device is a £50 ($61) poor quality torch (flashlight). Of more interest is the copper cylinder, which he identifies as a short piece of copper water pipe with two end caps. He doesn’t open it up, leaving us to expect that whatever mystical component deals with the RF must be concealed within it. This is not the usual Hackaday fare, but we know our readers are fascinated by all new technologies and will provide plenty of speculation as to how it might work in the comments.

The BBC story is worth a read to give a little background. If you are a non-Brit and you have heard of Glastonbury it is probably for the famous summer music festival held on a neighbouring farm, but the town is also famous for its connections with Arthurian legend and in recent decades for having become a centre for New Age mysticism. It has also become something of a hotbed of activism against the spread of 5G mobile networks, and has made the news this week because of concerns over the impartiality of a report condemning the technology released by its local government. If you have an interest in the 5G saga then brace yourselves for this document being used to lend a veneer of official credibility.

We’ve spent a while covering 5G issues, and given that some aspects of the story are shaping up to be a gift to technical journalists that keeps on giving, no doubt we’ll bring you more in due course. Devices such as the one featured here could even supplant audiophile products as a source of technical wonderment!

Thanks [Deus Ex Silicium] for the tip.

Self-Shutting Face Mask Is Hacker’s Delight

Most of us currently have to deal with wearing face masks in our daily life. An experience that is not entirely pleasurable as it is more difficult to breathe under the mask and can become hot after a while. In addition, you have to take off the mask whenever you want to eat or drink. [DesignMaker] has attempted to solve these problems by creating a mask with an opening that shuts automatically when other people are nearby.

While homemade masks are usually made from fabric [DesignMaker]’s version is much more to a hacker’s taste and includes 3D-printed parts, an Arduino Nano, PIR sensors, an SG90 servo, and some Neopixels. [DesignMaker]’s background in industrial design certainly helped him when modeling the mask as it looks just plain awesome.

His goal was to use PIR sensors to detect when a person is moving nearby. The servo then shuts an opening located at the mouth part of the mask. However, he soon found out that the mask often shuts when nobody is around. The reason is that the sensor can be triggered by ambient IR radiation when it is moving by itself. In the end [DesignMaker] decided that having the mask shut when you are moving is not a bug, it’s a feature.

Of course, the mask is just a prop and should not be used as protective equipment. As shown in the video below, also the false triggering of the PIR sensors can be annoying at times. But [DesignMaker] is already thinking of improvements like having the mask properly sealed with fabric or replacing the PIR sensors by a camera with face detection.

If you want to learn how to sew a proper fabric face mask have a look here. It’s a lot less ridiculous, but a lot more effective. You can’t have everything.

Video after the break.

Continue reading “Self-Shutting Face Mask Is Hacker’s Delight”

Crunching Giant Data From The Large Hadron Collider

Modern physics experiments are often complex, ambitious, and costly. The times where scientific progress could be made by conducting a small tabletop experiment in your lab are mostly over. Especially, in fields like astrophysics or particle physics, you need huge telescopes, expensive satellite missions, or giant colliders run by international collaborations with hundreds or thousands of participants. To drive this point home: the largest machine ever built by humankind is the Large Hadron Collider (LHC). You won’t be surprised to hear that even just managing the data it produces is a super-sized task.

Since its start in 2008, the LHC at CERN has received several upgrades to stay at the cutting edge of technology. Currently, the machine is in its second long shutdown and being prepared to restart in May 2021. One of the improvements of Run 3 will be to deliver particle collisions at a higher rate, quantified by the so-called luminosity. This enables experiments to gather more statistics and to better study rare processes. At the end of 2024, the LHC will be upgraded to the High-Luminosity LHC which will deliver an increased luminosity by up to a factor of 10 beyond the LHC’s original design value.

Currently, the major experiments ALICE, ATLAS, CMS, and LHCb are preparing themselves to cope with the expected data rates in the range of Terabytes per second. It is a perfect time to look into more detail at the data acquisition, storage, and analysis of modern high-energy physics experiments. Continue reading “Crunching Giant Data From The Large Hadron Collider”

The Rusty Nail Award For Worst WiFi Antenna

In general, you get what you pay for, and if what you pay for is a dollar-store WiFi antenna that claims to provide 12 dBi of signal gain, you shouldn’t be surprised when a rusty nail performs better than it.

The panel antenna that caught [Andrew McNeil]’s eye in a shop in Rome is a marvel of marketing genius. He says what caught his eye was the Windows Vista compatibility label, a ploy that really dates this gem. So too does the utterly irrelevant indication that it’s USB compatible when it’s designed to plug into an SMA jack on a WiFi adapter. [Andrew]’s teardown was uninspiring, revealing just a PCB with some apparently random traces to serve as the elements of a dipole. We found it amusing that the PCB silkscreen labels the thru-holes as H1 to H6, which is a great way to make an uncrowded board seem a bit more important.

The test results were no more impressive than the teardown. A network analyzer scan revealed that the antenna isn’t tuned for the 2.4-GHz WiFi band at all, and practical tests with the antenna connected to an adapter were unable to sniff out any local hotspots. And just to hammer home the point of how bad this antenna is, [Andrew] cobbled together a simple antenna from an SMA connector and a rusty nail, which handily outperformed the panel antenna.

We’ve seen plenty of [Andrew McNeil]’s WiFi antenna videos before, like his umbrella and tin can dish. We like the sanity he brings to the often wild claims of WiFi enthusiasts and detractors alike, especially when he showed that WiFi doesn’t kill houseplants. We can’t help but wonder what he thinks about the current 5G silliness.

Continue reading “The Rusty Nail Award For Worst WiFi Antenna”

Searching For Alien Life With The Sun As Gravitational Telescope

Astronomy is undoubtedly one of the most exciting subjects in physics. Especially the search for exoplanets has been a thriving field in the last decades. While the first exoplanet was only discovered in 1992, there are now 4,144 confirmed exoplanets (as of 2nd April 2020). Naturally, we Sci-Fi lovers are most interested in the 55 potentially habitable exoplanets. Unfortunately, taking an image of an Earth 2.0 with enough detail to identify potential features of life is impossible with conventional telescopes.

The solar gravitational lens mission, which has recently been selected for phase III funding by the NASA Innovative Advanced Concepts (NIAC) program, is aiming to change that by taking advantage of the Sun’s gravitational lensing effect. Continue reading “Searching For Alien Life With The Sun As Gravitational Telescope”