Levitating Lego Generator Runs On Air

[Jamie] decided to build a generator, and Lego is his medium of choice. Thus was created a fancy levitating generator that turns a stream of air into electricity. 

The basic concept is simple enough for a generator—magnets moving past coils to generate electricity. Of course, Lego doesn’t offer high-strength magnetic components or copper coils, so this generator is a hybrid build which includes a lot of [Jamie’s] non-Lego parts. Ultimately though, this is fun because of the weird way it’s built. Lego Technic parts make a very crude turbine, but it does the job. The levitation is a particularly nice touch—the build uses magnets to hover the rotor in mid-air to minimize friction to the point where it can free wheel for minutes once run up to speed. The source of power for this contraption is interesting, too. [Jamie] didn’t just go with an air compressor or a simple homebrew soda bottle tank. Instead, he decided to use a couple of gas duster cans to do the job. The demos are pretty fun, with [Jamie] using lots of LEDs and a radio to demonstrate the output.  The one thing we’d like to see more of is proper current/voltage instrumentation—and some measurement of the RPM of this thing!

While few of us will be rushing out to build Lego generators, the video nonetheless has educational value from a mechanical engineering standpoint. Fluids and gases really do make wonderful bearings, as we’ve discussed before. Video after the break.

Continue reading “Levitating Lego Generator Runs On Air”

Building A Sliding Tile Clock

Hackers like making clocks, and we like reporting on them around these parts. Particularly if they’ve got a creative mechanism that we haven’t seen before. This fine timepiece from [gooikerjh] fits the bill precisely—it’s a sliding tile clock!

The brains of the build is an Arduino Nano ESP32. No, that’s not a typo. It’s basically an ESP32 in a Nano-like form factor. It relies on its in-built WiFi hardware to connect to the internet and synchronize itself with time servers so that it’s always showing accurate time. The ESP32 is set up to control a set of four stepper motors with a ULN2003 IC, and they run the neat time display mechanism.

All the custom parts are 3D printed, and the sliding tile concept is simple enough. There are four digits that show the time. Each digit contains number tiles that slide into place as the digit rotates. To increment the digit by one, it simply needs to be rotated 180 degrees by the relevant stepper motor, and the next number tile will slide into place.

We love a good clock at Hackaday—the more mechanical, the better. If you’re cooking up your own nifty and enigmatic clocks at home, don’t hesitate to drop us a line!

Zink Is Zero Ink — Sort Of

When you think of printing on paper, you probably think of an ink jet or a laser printer. If you happen to think of a thermal printer, we bet you think of something like a receipt printer: fast and monochrome. But in the last few decades, there’s been a family of niche printers designed to print snapshots in color using thermal technology. Some of them are built into cameras and some are about the size of a chunky cell phone battery, but they all rely on a Polaroid-developed technology for doing high-definition color printing known as Zink — a portmanteau of zero ink.

For whatever reason, these printers aren’t a household name even though they’ve been around for a while. Yet, someone must be using them. You can buy printers and paper quite readily and relatively inexpensively. Recently, I saw an HP-branded Zink printer in action, and I wasn’t expecting much. But I was stunned at the picture quality. Sure, it can’t print a very large photo, but for little wallet-size snaps, it did a great job.

The Tech

Polaroid was well known for making photographic paper with color layers used in instant photography. In the 1990s, the company was looking for something new. The Zink paper was the result. The paper has three layers of amorphochromic dyes. Initially, the dye is colorless, but will take on a particular color based on temperature.

The key to understanding the process is that you can control the temperature that will trigger a color change. The top layer of the paper requires high heat to change. The printer uses a very short pulse, so that the top layer will turn yellow, but the heat won’t travel down past that top layer.

The middle layer — magenta — will change at a medium heat level. But to get that heat to the layer, the pulse has to be longer. The top layer, however, doesn’t care because it never gets to the temperature that will cause it to turn yellow.

The bottom layer is cyan. This dye is set to take the lowest temperature of all, but since the bottom heats up slowly, it takes an even longer pulse at the lower temperature. The top two layers, again, don’t matter since they won’t get hot enough to change. A researcher involved in the project likened the process to fried ice cream. You fry the coating at a high temperature for a short time to avoid melting the ice cream. Or you can wait, and the ice cream will melt without affecting the coating.

Continue reading “Zink Is Zero Ink — Sort Of”

A SNES CPU Replacement Via FPGA

Let’s say you had a SNES with a busted CPU. What would you do? Your SNES would be through! That is, unless, you had a replacement based on an FPGA. [leonllr] has been developing just such a thing.

The project was spawned out of necessity. [leonllr] had purchased a SNES which was struck down with a dead CPU—in particular, a defective S-CPU revision A. A search for replacements only found expensive examples, and ones that were most likely stripped from working machines. A better solution was necessary.

Hence, a project to build a replacement version of the chip using the ICE40HX8K FPGA. Available for less than $20 USD, it’s affordable, available, and has enough logic cells to do the job. It’s not just a theoretical or paper build, either. [leonllr] has developed a practical installation method to hook the ICE40HX8K up to real hardware, which uses two flex PCBs to go from the FPGA mainboard to the SNES motherboard itself. As for the IP on the FPGA, the core of the CPU itself sprung from the SNESTANG project, which previously recreated the Super Nintendo on Sipeed Tang FPGA boards. As it stands, boards are routed, and production is the next step.

It’s nice to see classic hardware resurrected by any means necessary. Even if you can’t get a whole bare metal SNES, you might be able to use half of one with a little help from an FPGA. We’ve seen similar work on other platforms, too. Meanwhile, if you’re working to recreate Nintendo 64 graphics chips in your own basement, or something equally weird, don’t hesitate to let us know!

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The Leather Keyboard

Are you eager to get your feet wet in the keyboard surf, but not quite ready to stand up and ride the waves of designing a full-size board? You should paddle out with a macro pad instead, and take on the foam face-first and lying down.

A beautiful purple galaxy-themed macro pad with nine switches and three knobs.
Image by [Robert Feranec] via Hackaday.IO
Luckily, you have a great instructor in [Robert Feranec]. In a series of hour-long videos, [Robert] guides you step by step through each part of the process, from drawing the schematic, to designing a PCB and enclosure, to actually putting the thing together and entering a new world of macros and knobs and enhanced productivity.

Naturally, the fewer keys and things you want, the easier it will be to build. But [Robert] is using the versatile Raspberry Pi 2040, which has plenty of I/O pins if you want to expand on his basic plan. Not ready to watch the videos? You can see the schematic and the 3D files on GitHub.

As [Robert] says, this is a great opportunity to learn many skills at once, while ending up with something terrifically useful that could potentially live on your desk from then on. And who knows where that could lead?

Continue reading “Keebin’ With Kristina: The One With The Leather Keyboard”

DIY Linear Tubular Motor Does Precise Slides

We’ve seen plenty of motor projects, but [Jeremy]’s DIY Tubular Linear Motor is a really neat variety of stepper motor in a format we certainly don’t see every day. It started as a design experiment in making a DIY reduced noise, gearless actuator and you can see the result here.

Here’s how it works: the cylindrical section contains permanent magnets, and it slides back and forth through the center of a row of coils depending on how those coils are energized. In a way, it’s what one would get by unrolling a typical rotary stepper motor. The result is a gearless (and very quiet) linear actuator that controls like a stepper motor.

While a tubular linear motor is at its heart a pretty straightforward concept, [Jeremy] found very little information on how to actually go about making one from scratch. [Jeremy] acknowledges he’s no expert when it comes to motor design or assembly, but he didn’t let that stop him from iterating on the concept (which included figuring out optimal coil design and magnet spacing and orientation) until he was satisfied. We love to see this kind of learning process centered around exploring an idea.

We’ve seen DIY linear motors embedded in PCBs and even seen them pressed into service as model train tracks, but this is the first time we can recall seeing a tubular format.

Watch it in action in the short video embedded below, and dive into the project log that describes how it works for added detail.

Continue reading “DIY Linear Tubular Motor Does Precise Slides”

Tiny Bubbles In The Memory

We are always fascinated by bubble memory. In the late 1970s, this was the “Next Big Thing” that, as you may have guessed, was, in fact, not the next big thing at all. But there were a number of products that used it as non-volatile memory at a time when the alternative was tape or disk. [Smbakeryt] has a cool word processor with an acoustic coupler modem made by Teleram. Inside is — you guessed it — bubble memory.

The keyboard was nonfunctional, but fixable. Although we wouldn’t have guessed the problem. Bubble memory was quite high tech. It used magnetic domains circulating on a thin film of magnetic material. Under the influence of a driving field, the bubbles would march past a read-write head that could create, destroy, or read the state of the bubble.

Why didn’t it succeed? Well, hard drives got cheap and fairly rugged. The technology couldn’t compete with the high-density hard drives that could be reached with improved heads and recording strategies. Bubble memory did find use in high-vibration items, but also wound up in things like this terminal, at least one oscilloscope, and a video game.

Bubble memory evolved from twistor memory, one of several pre-disk technologies. While they are hard to come by today, you can find the occasional project that either uses some surplus or steals a part off of a device like this one.

Continue reading “Tiny Bubbles In The Memory”