3DBenchy Starts Enforcing Its No Derivatives License

[Editor’s note: A few days later, it looks now like Prusa pulled the models of their own accord, because of their interpretation of the copyright law. Creative Tools and NTI claim that they were not involved.]

Nobody likes reading the fine print, least of all when you’re just downloading some 3D model. While printing a copy for personal use this is rarely an issue, things can get a lot more complicated when you make and distribute a derived version of a particular model.

Case in point the ever popular 3DBenchy model, which was intended to serve as a diagnostic aid by designer [Creative Tools] (recently acquired by [NTI Group] ). Although folks have been spinning up their own versions of this benchmark print for years, such derivative works were technically forbidden by the original model’s license — a fact that the company is now starting to take seriously, with derivative models reportedly getting pulled from Printables.

The license for the 3DBenchy model is (and always has been) the Creative Commons BY-ND 4.0, which requires attribution and forbids distributing of derivative works. This means that legally any derived version of this popular model being distributed on Thingiverse, Printables, etc. is illegal, as already noted seven years ago by an observant user on Reddit. According to the message received by a Printables user, all derived 3DBenchy models will be removed from the site while the license is now (belatedly) being enforced.

Although it’s going to be a bit of an adjustment with this license enforcement, ultimately the idea of Creative Commons licenses was that they set clear rules for usage, which become meaningless if not observed.

Thanks to [JohnU] for the tip.

All-Band Receiver Lets You Listen To All The Radio At Once

There are many ways to build a radio receiver, but most have a few things in common, such as oscillators, tuned circuits, detectors, mixers, and amplifiers. Put those together in the right order and you’ve got a receiver ready to tune in whatever you want to listen to. But if you don’t really care about tuning and want to hear everything all at once, that greatly simplifies the job and leaves you with something like this homebrew all-band receiver.

Granted, dispensing with everything but a detector and an audio amplifier will seriously limit any receiver’s capabilities. But that wasn’t really a design concern for [Ido Roseman], who was in search of a simple and unobtrusive way to monitor air traffic control conversations while flying. True, there are commercially available radios that tune the aviation bands, and there are plenty of software-defined radio (SDR) options, but air travel authorities and fellow travelers alike may take a dim view of an antenna sticking out of a pocket.

So [Ido] did a little digging and found a dead-simple circuit that can receive signals from the medium-wave bands up into the VHF range without regard for modulation. The basic circuit is a Schottky diode detector between an antenna and a high-gain audio amplifier driving high-impedance headphones; [Ido] built a variation that also has an LM386 amplifier stage to allow the use of regular earbuds, which along with a simple 3D-printed case aids in the receiver’s stealth.

With only a short piece of wire as an antenna, reception is limited to nearby powerful transmitters, but that makes it suitable for getting at least the pilot side of ATC conversations. It works surprisingly well — [Ido] included a few clips that are perfectly understandable, even if the receiver also captured things like cell phones chirping and what sounds like random sferics. It seems like a fun circuit to play with, although with our luck we’d probably not try to take it on a plane.

Retro Big Iron For You

Many of us used “big iron” back in the day. Computers like the IBM S/360 or 3090 are hard to find, transport, and operate, so you don’t see many retrocomputer enthusiasts with an S/370 in their garages. We’ve known for a while that the Hercules emulators would let you run virtual copies of these old mainframes, but every time we’ve looked at setting any up, it winds up being more work than we wanted to spend. Enter [Ernie] of [ErnieTech’s Little Mainframes]. He’s started a channel to show you how to “build” your own mainframe — emulated, of course.

One problem with the mainframe environment is that there are a bunch of operating system-like things like MVS, VM/CMS, and TSO. There were even custom systems like MUSIC/SP, which he shows in the video below.

Continue reading “Retro Big Iron For You”

A Street For Every Date

Different cultures have their own conventions for naming locations, for example in the United Kingdom there are plenty of places named for monarchs, while in many other countries there are not. An aspect of this fascinated [Ben Ashforth], who decided to find all the streets in Europe named after auspicious dates, and then visit enough to make a calendar. He gave a lightning talk about it at last year’s EMF Camp, which we’ve embedded below.

Starting with an aborted attempt to query Google Maps, he then moved on to the OpenStreetMap database. From there he was able to construct a list of date-related street name across the whole of Europe, and reveal a few surprising things about their distribution. He came up with a routing algorithm to devise the best progression in which to see them, and with a few tweaks to account for roads whose names had changed, arrived at an epic-but-efficient traversal of the continent. The result is a full year’s calendar of street names, which you can download from his website.

Being used to significant Interrail travel where this is written, we approve of an algorithmically generated Euro trip. We’re indebted to [Barney Livingstone] for the tip, and we agree with him that 150 slides in a 5 minute talk is impressive indeed.

Continue reading “A Street For Every Date”

Try A PWMPot

[Stephen Woodward] is familiar with digital potentiometers but is also familiar with their limitations. That spurred him to create the PWMPot which performs a similar function, but with better features than a traditional digital pot. Of course, he admits that this design has some limitations of its own, so — as usual — you have to make your design choices according to what’s important to you.

Perhaps the biggest limitation is that the PWMPot isn’t useful at even moderately high frequencies. The circuit works by driving two CMOS switches into an RC circuit. The switches’ inverted phase tends to cancel out any ripple in the signal.

Continue reading “Try A PWMPot”

38C3: It’s TOSLINK, Over Long Distance Fibre

If you’ve owned a CD player or other piece of consumer digital audio gear manufactured since the 1980s, the chances are it has a TOSLINK port on the back. This is a fairly simple interface that sends I2S S/PDIF digital audio data down a short length of optical fibre, and it’s designed to run between something like a CD player and an external DAC. It’s ancient technology in optical fibre terms, with a lowish data rate and plastic fibre, but consider for a minute whether it could be adapted for modern ultra-high-speed conenctions. It’s what [Ben Cartwright-Cox] has done, and he delivered a talk about it at the recent 38C3 event in Germany.

if you’ve cast you eye over any fibre networking equipment recently, you’ll be familiar with SFP ports. These are a standard for plug-in fibre terminators, and they can be had in a wide variety of configurations for different speeds, topographies, and wavelengths. They’re often surprisingly simple inside, so he wondered if he could use them to carry TOSLINK instead of a more conventional network. And it worked, with the simple expedient of driving an SFP module with an LVDS driver to make a differential signal. There follows a series of experiments calling in favours from friends with data centre space in various locations around London, finally ending up with a 140 km round trip for CD-quality audio.

It’s an interesting experiment, but perhaps the most value here is in what it reveals to us about the way optical networking systems work. Most of us don’t spend our days in data centres, so that’s an interesting technology to learn about. The video of the talk itself is below the break.

Continue reading “38C3: It’s TOSLINK, Over Long Distance Fibre”

FLOSS Weekly Episode 815: You Win Some, You Lose Some

This week, Jonathan Bennett and Randal chat with Matija Å uklje about Open Source and the Law! How do Open Source projects handle liability, what should a Contributor License Agreement (CLA) look like, and where can an individual or project turn for legal help?

Continue reading “FLOSS Weekly Episode 815: You Win Some, You Lose Some”