World Create Day: A Subcontinent, An Island Continent, And Asia

Hackaday’s own World Create Day is just two days away. This Saturday, April 23rd, the Hackaday community will rise up, come together, have fun, share a few stories, and build something cool in the process.

ausasiaWhen we announced World Create Day a few weeks ago, we were inundated with responses. Hackerspaces across the globe have offered up their spaces for the Hackaday community to brainstorm the latest entries for The Hackaday Prize.

We have hackerspaces from Islamabad to Adelaide and from Mumbai to Shenzhen opening their doors to the world. If you’re near any of these events, join in on the festivities. If you don’t see one in your neck of the woods, you can still host your own meetup. Just click here to get your town on the map.

What’s going on at these meetups? [Robert] and [Steven] in Adelaide are planning several events including a meet and greet, a few lightning talks, and snacks. They’re also live streaming their event. Maker’s Asylum in Mumbai is doing project demos and forming some teams for the Hackaday Prize. It’s going to be a great event at every hackerspace, and the largest distributed meetup we’ve ever done. Don’t miss this.

The HackadayPrize2016 is Sponsored by:

Pine64: The Un-Review

Even before the announcement and introduction of the Raspberry Pi 3, word of a few very powerful single board ARM Linux computers was flowing out of China. The hardware was there – powerful 64-bit ARM chips were available, all that was needed was a few engineers to put these chips on a board, a few marketing people, and a contract manufacturer.

One of the first of these 64-bit boards is the Pine64. Introduced to the world through a Kickstarter that netted $1.7 Million USD from 36,000 backers, the Pine64 is already extremely popular. The boards are beginning to land on the doorsteps and mailboxes of backers, and the initial impressions are showing up in the official forums and Kickstarter campaign comments.

I pledged $15 USD to the Pine64 Kickstarter, and received a board with 512MB of RAM, 4K HDMI, 10/100 Ethernet and a 1.2 GHz ARM Cortex A53 CPU in return. This post is not a review, as I can’t fully document the Pine64 experience. My initial impression? This is bad. This is pretty bad.

Continue reading “Pine64: The Un-Review”

All Prior Art

Disclosed herein is a device for gauging medication dosage. The method may include displaying first, second and third navigation controls. A switch is connected in parallel to the relay contacts and is configured for providing a portion of the input power as supplemental load power to the output as a function of back EMF energy.

We’ve had patents on the mind lately, and have been reading a fair few of them. If you read patent language long enough, though, it all starts to turn into word-salad. But with his All Prior Art and All the Claims websites, [Alexander Reben] tosses this salad for real. He’s got computers parsing existing patents and randomly reassembling them.

Rather than hoping that his algorithm comes up with the next great idea, [Alexander] is hoping to nip the truly trivial ones in the bud. Because prior art — the sum of all pre-existing ideas — is enough to disqualify a patent, if an idea is so trivial that his algorithm could have come up with it, it’s sooner or later going to be off the table.

Most of the results are insane, of course. And it seems to be producing a patent at a rate of about one per 10-15 seconds, so we’re guessing that it’ll take quite a few years for these cyber-monkeys to come up with the works of Shakespeare. But with bogus and over-broad patents filtering through the system every day, it’s not implausible that some day it’ll prove useful.

[Via New Scientist, thanks Frank!]

Hacking When It Counts: POW Canteen Radios

Of all the horrors visited upon a warrior, being captured by the enemy might count as the worst. With death in combat, the suffering is over, but with internment in a POW camp, untold agonies may await. Tales of torture, starvation, enslavement and indoctrination attend the history of every nation’s prison camps to some degree, even in the recent past with the supposedly civilizing influence of the Hague and Geneva Conventions.

But even the most humanely treated POWs universally suffer from one thing: lack of information. To not know how the war is progressing in your absence is a form of torture in itself, and POWs do whatever they can to get information. Starting in World War II, imprisoned soldiers and sailors familiar with the new field of electronics began using whatever materials they could scrounge and the abundance of time available to them to hack together solutions to the fundamental question, “How goes the war?” This is the story of the life-saving radios some POWs managed to hack together under seemingly impossible conditions.

Continue reading “Hacking When It Counts: POW Canteen Radios”

BeagleBone Pin-Toggling Torture Test

Benchmarks often get criticized for their inability to perfectly model the real-world situations that we’d like them to. So take what follows in the limited scope that it’s intended, and don’t read too much into it. [Joonas Pihlajamaa]’s experiments with toggling a hardware pin as fast as possible on different single-board computers can still show us something.

The take-home result won’t surprise anyone who’s worked with a single-board computer: the higher-level interfaces are simply slow compared to direct memory-mapped GPIO access. But really slow. We’re talking around 5 kHz from Python or any of the file-based interfaces to the pins versus 3 MHz for direct access. Worse, as you’d expect when a non-realtime operating system is in the middle, there are glitches on the order of ten milliseconds with all the file-based methods.

This test only tells us so much, though, and it’s not really taking advantage of the BeagleBone Black’s ace in the hole, the PRUs — onboard hardware processors that bring real-time IO capabilities to the system. We’d like to see a re-write of the code to take advantage of libpruio, for instance. A 20 MHz square wave is a piece of cake with the PRUs.

Of course, it’s not interacting, which is probably in the spirit of the benchmark as written. But if raw hardware speed on a BeagleBone is the goal, it’s likely that the PRUs are going to feature prominently in the solution.

A Requiem For Meters

Smart Energy GB are the organisation campaigning for the roll-out of smart energy meters in the UK. Publicizing smart meters and making traditional electricity and gas meters look obsolete is part of their mission, and towards the end of last year they came up with a novel idea. “Requiem for Meters”, is a piece of orchestral music performed on instruments made from old gas and electricity meters, and recorded by the Royal Philharmonic Orchestra at the famous Abbey Road Studios in London.

The old meters serve as much as artworks in some of the instruments as they do a function. As far as we can see for example the gas meter violins are electric instruments rather than acoustic, the meter serving only as the physical body of the instrument rather than as an acoustic cavity in the way the body of a traditional violin does. The wind instruments seem to incorporate the cavity of a gas meter in their construction though and the percussive instruments are very much dependent on the properties of the meters themselves, though we’ll leave it to the reader to decide whether the resulting sound is one you’d want regularly on your hi-fi.

The video below the break shows some of the background to the piece, though sadly not as much instrument building detail as we’d like.

Continue reading “A Requiem For Meters”

A Friendly Flying Robot Pet

[luca] has always wanted a flying robot, but despite the recent popularity of quadcopters and drones [luca] has never seen a drone that is truly autonomous. Although sometimes billed as autonomous, quadcopters and fixed wing aircraft have always had someone holding a remote, had to stay in a controlled environment, or had some off-board vision system.

Computers are always getting smaller and faster, battery and motor technology is always getting better. That’s why [luca] is building a truly autonomous flying robot for the 2016 Hackaday Prize.

Since [luca] is building a coaxial copter – something that looks like a ducted fan with a few vanes at the bottom – there will be control issues. Normal helicopters use the pitch of the blades and the torque produced by the tail rotor to keep flying straight. A quadcopter uses two pairs of motors spinning in opposite directions to stay level. With just two rotors mounted on top of each other, you would think [luca]’s coaxial copter is an intractable problem. Not so; there are bizarre control systems for this type of flying machine that make it as nimble in the sky as any other helicopter.

The design of this flying robot is a bit unlike anything on the market. It looks like a flying ducted fan, with a few electronics strapped to the bottom. It’s big, but also has the minimum number of rotors, to have the highest power density possible with current technology. With a few calculations, [luca] predicted this robot will be able to hoist an IMU, GPS, ultrasonic range finder, optical flow camera, and a LIDAR module in the air for about fifty minutes. That’s a remarkably long flight time for something that hovers, and we can’t wait to see how [luca]’s build turns out.

The HackadayPrize2016 is Sponsored by: