Printable Fix For Time Card Clock Has Owner Seeing Red Again

When [Morley Kert] laid eyes on a working time card-punching clock, he knew he had to have it for a still-secret upcoming project. The clock seemed to work fine, except that after a dozen or so test punches, the ink was rapidly fading away into illegibility. After a brief teardown and inspection, [Morley] determined that the ribbon simply wasn’t advancing as it should.

This clock uses a ribbon cassette akin to a modern typewriter, except that instead of a feed spool and a take-up spool, it has a short length of ribbon that goes around and around, getting re-inked once per revolution.

When a card is inserted, a number of things happen: a new hole is punched on the left side, and an arm pushes the card against the ribbon, which is in turn pushed against the mechanical digit dials of the clock to stamp the card.

Finally, the ribbon gets advanced. Or it’s supposed to, anyway. [Morley] could easily see the shadow of a piece that was no longer there, a round piece with teeth with a protrusion on both faces for engaging both the time clock itself and the ribbon cassette. A simple little gear.

After emailing the company, it turns out they want $95 + tax to replace the part. [Morley] just laughed and fired up Fusion 360, having only caliper measurements and three seconds of a teardown video showing the missing part to go on. But he pulled it off, and pretty quickly, too. Version one had its problems, but 2.0 was a perfect fit, and the clock is punching evenly again. Be sure to check it out after the break.

Okay, so maybe you don’t have a time card clock to fix. But surely you’ve had to throw out an otherwise perfectly good coat because the zipper broke?

Continue reading “Printable Fix For Time Card Clock Has Owner Seeing Red Again”

Building A Pendulum Clock Out Of Lego

Pendulum clocks aren’t used quite as often these days as their cumbersome mechanics and timekeeping abilities have long been outshone by electronic alternatives. However, they’re still fun and they do work, so [PuzzLEGO] set about building a working example with Lego.

The rear view reveals the escapement built from Lego Technic parts.

The core of the clock is the escapement, a linkage which the pendulum can only turn in one direction. As the pendulum swings once per second, it lets the escapement gear turn one notch forward at a time, turning the gears of the clock which drive the hands. It’s powered with a falling weight in the form of a drink bottle full of water, which turns the gears of the clock via a chain.

The clock can only run for approximately an hour, so it’s set up with a second and minute hand instead of the more usual minute and hour hand. However, with the pendulum tuned to the appropriate length and the weight fitted, it pleasantly ticks and tocks the seconds away.

We’ve seen other great builds from [PuzzLEGO] before, too, like this inventive Rubik’s Cube build. Video after the break.

Continue reading “Building A Pendulum Clock Out Of Lego”

Hackaday Podcast 156: 3D-Printing Rainbows, Split-Flap Clocks, Swapping EV Car Batteries, And Floppy Time

This week, Hackaday Editor-in-Chief Elliot Williams and Assignments Editor Kristina Panos fawn over a beautiful Italian split-flap clock that doesn’t come cheap, and another clock made of floppies that could be re-created for next to nothing. We’ll also sing the praises of solderless circuitry for prototyping and marvel over a filament dry box with enough sensors to control an entire house. The finer points of the ooh, sparkly-ness of diffraction gratings will be discussed, and by the end of the show, you’ll know what we each like in a microscope.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

(And if you’re wondering about what my joke about not having Kristina on the show for 28 seconds, and all the professionalism, was about — we both forgot to press record the first time through and got ~15 minutes into the show before noticing. Yeah. But we had a good time the second time around anyway.)

Direct Download (The best 40 MB you’ll download today!)

Continue reading “Hackaday Podcast 156: 3D-Printing Rainbows, Split-Flap Clocks, Swapping EV Car Batteries, And Floppy Time”

A Tuning Fork Clock, With Discrete Logic

[Willem Koopman aka Secretbatcave] was looking at a master clock he has in his collection which was quite a noisy device, but wanted to use the matching solenoid slave clock mechanism he had to hand. Willem is a fan of old-school ‘sector’ clocks, so proceeded to build his ideal time piece — Vibrmatic — exactly the way he wanted. Now, since most time keeping devices utilise a crystal oscillator — which is little more than a lump of vibrating quartz — why not scale it up a bit and use the same principle, except with a metal tuning fork? (some profanity, just to warn you!)

Shock-mounted tuning force oscillator

A crystal oscillator operates in a simple manner; you put some electrical energy in, it resonates at its natural frequency, you sense that resonance, and feed it back into it to keep it sustaining. With a tuning fork oscillator, the vibration forcing and the feedback are both done via induction, coils act as the bridge between the electronic and mechanical worlds.

By mounting the tuning fork onto a shock mounting, the 257 Hz drone was kept from leaking out into the case and disturbing the household. This fork was specified to be 256 Hz, but [Willem] reckons the drag of the electromagnets pushed it off frequency a bit. Which make sense, since its a mechanical system, that has extra forces acting upon it.

The sector face was CNC cut from aluminium, the graphics engraved, then polished up a bit. Finally after a spot of paint, it looks pretty smart. Some nice chunks of upcycled wood taken from some building work spoils formed the exposed enclosure. On the electronics side, after totally ignoring the frequency error, and then tripping over a bunch of problems such as harmonics in the oscillation, and an incorrectly set-up divider, a solution which seemed to work was found, but like always, there are quite a few more details to the story to be found in the build log.

We’ve seen a tuning fork clock recently, like this 440 Hz device by [Kris Slyka] that the project above references, and whilst we’re talking about tuning forks, here’s a project log showing the insides of those ubiquitous 32.768 kHz crystal units.

A Simple 3D Printed Gear Clock Shows Off How It Works

Analog clocks are beautiful things inside, using ornate gear trains to keep track of time in a dance of mechanical beauty. However, all too often, the complexity is hidden inside. This gear clock design from [Tada3], however, proudly shows off its workings.

A small stepper motor is used to run the clock’s movement, a small part of the 28BYJ-48 variety. The motor is driven once per second, making the gear train tick along in a rather compelling way that is somehow more visually interesting. Of course, with some modification to the design, continuous motion could easily be done as well.

The stepper motor is driven by an Arduino Nano, which also handles the timekeeping. One thing that’s missing is a real-time clock, something that should be added to the design if you wish it to keep accurate time. As it is, the included Arduino sketch simply uses the delay() function to time the stepping of the motor. It makes the clock tick along, but will quickly drift out of sync.

The design was also recreated in a YouTube video by [Mirko Pavleski], showing that the files are of suitable quality for building your own at home. We’ve seen some gear clock designs before, too, from the laser-cut to the neatly-nested. Video after the break.

Continue reading “A Simple 3D Printed Gear Clock Shows Off How It Works”

A Nested Gear Clock

One of the most common projects we see here at Hackaday is a clock. It could just be that we as humans are fascinated by the concept of time or that making a piece of functional art appeals to our utilitarian sense. In that spirit, [Alexandre Chappel] set out to make a large mechanical clock with complex gears.

The initial design was made in Fusion360 over a week and then in a somewhat bold move, [Alexandre] started up the CNC and cut all the parts out of valchromat. The basic idea of the clock is that the numbers move on the clock, not the hands. So the clock should show 10:25 instead of moving hands to the 10 and the 5. Most of the clock is made of up stacked gear assemblies, geneva drives, and many bearings. A single stepper motor drives the whole clock, which [Alexandre] admits is a bit of a cheat since trying to add springs and an escapement would add complexity to an already complex clock. He did have to adjust and recut a few gears but most of the assembly came together nicely. Some 3d printed numbers dropped into the CNCed slots offers much-improved readability.

A few problems became apparent once the system was together. The numbers don’t quite line up perfectly, which is unfortunate. He mentioned that tighter tolerances on the gears would likely help there. A fatal design flaw on the smallest disk became apparent as it needs to turn a sixth of the circle whereas the outer circle is just turning a tenth of the circle. Mechanical advantage isn’t in [Alexandre’s] favor and the stepper skips some steps and it slowly makes its way towards the next second digit of the hour.

If you’re looking for more beautiful artistic clocks, why not check out this circuit sculpture one?

Continue reading “A Nested Gear Clock”

Flip-up clock

A Flip Clock That Flips Up, Not Down

The venerable flip clock has become an outsized part of timekeeping culture that belies the simplicity of its mechanism. People collect and restore the electromechanical timepieces with devotion, and even seek to build new kinds of clocks based on split-flap displays. Designs differ, but they all have something in common in their use of gravity to open the leaves and display their numbers.

But what if you turned the flip clock on its head? That’s pretty much what [Shinsaku Hiura] accomplished with a flip clock that stands up the digits rather than flipping them down. The clock consists of three 3D-printed drums that are mounted on a common axle and linked together with gears and a Geneva drive. Each numeral is attached to a drum through a clever cam that makes sure it stands upright when it rotates to the top of the drum, and flops down cleanly as the drum advances. The video below makes the mechanism’s operation clear.

The build instructions helpfully note that “This clock is relatively difficult to make,” and given the extensive troubleshooting instructions offered, we can see how that would be so. It’s not the first time we’ve seen a mechanically challenging design from [Shinsaku Hiura]; this recent one-servo seven-segment display comes to mind.

Continue reading “A Flip Clock That Flips Up, Not Down”