Magic Mirror On The Wall, “Is Pi Or ESP, Fairest Of All?”

“What’s the weather like, honey?” “I don’t know. Let me check the mirror.”  The mirror?

Both [Dylan Pierce] and [squix] have mirror projects that display the weather. They took two different approaches which makes for an interesting comparison. [Dylan] uses a Raspberry Pi with an actual monitor behind the mirror. [squix] puts an OLED behind the mirror driven by a ESP8266.  It appears there is more than one way to hack a mirror, or anything, which is what makes hacking fun.

[squix] started with a picture frame, adding tinting film to the glass so it would reflect. A small section of tint was removed to allow the OLED to be seen. The ESP8266 software connects to the Weather Underground to get the latest information.

The Raspberry Pi version by [Dylan] puts a 27″ monitor behind the mirror. That is either terribly impressive or way over the top but seeing Linux boot behind the mirror makes it worth the effort. The Pi generates a web page which makes this adaptable as a general purpose kiosk.

A video of [squix]’s mirror in operation, after the break.

Continue reading “Magic Mirror On The Wall, “Is Pi Or ESP, Fairest Of All?””

Biometric Bracelet Electrifies You To Unlock Your Tablet

Researchers [Christian Holz] and [Marius Knaust] have come up with a cool new way to authenticate you to virtually any touchscreen device. This clever idea couples a biometric sensor and low-data-rate transmitter in a wearable wrist strap that talks to the touch screen by electrifying you.

Specifically the strap has electrodes that couple a 50V, 150kHz signal through your finger, to the touchscreen. The touchscreen picks up both your finger’s location through normal capacitive-sensing methods and the background signal that’s transmitted by the “watch”. This background signal is modulated on and off, transmitting your biometric data.

The biometric data itself is the impedance through your wrist from one electrode to another. With multiple electrodes encircling your wrist, they end up with something like a CAT scan of your wrist’s resistance. Apparently this is unique enough to be used as a biometric identifier. (We’re surprised.)

Continue reading “Biometric Bracelet Electrifies You To Unlock Your Tablet”

Globally Distributed Sensor Net Monitors Air Quality And Radiation

Radu Motisan has been building a global environmental surveillance network which first monitored radiation levels, and since has added the ability to measure air quality. He believes that people need to be more aware of the environment around them in a similar way that society has awakened to issues about personal fitness and health. We can’t do this without a simple and reliable way to measure the environment.

He discussed the project at length during his presentation at the 2015 Hackaday SuperConference. Watch that talk in the video below, then join us after the break for more details on the hardware and infrastructure that collects and presents the data publicly.

Continue reading “Globally Distributed Sensor Net Monitors Air Quality And Radiation”

AirAsia Crash Analysis: Who Or What Failed?

Just a few days after Christmas last year AirAsia Flight 8051 traveling to Singapore tragically plummeted into the sea. Indonesia completed its investigation of the crash and just released the final report. Media coverage, especially in Asia is big. The stories are headlined by pilot error but,as technologists, there are lessons to be learned deeper in the report.

The Airbus A320 is a fly-by-wire system meaning there are no mechanical linkages between the pilots and the control surfaces. Everything is electronic and most of a flight is under automatic control. Unfortunately, this also means pilots don’t spend much time actually flying a plane, possibly less than a minute, according to one report.

Here’s the scenario laid out by the Indonesian report: A rudder travel limit computer system alarmed four times. The pilots cleared the alarms following normal procedures. After the fifth alarm, the plane rolled beyond 45 degrees, climbed rapidly, stalled, and fell.

Continue reading “AirAsia Crash Analysis: Who Or What Failed?”

Toward The Optionally Piloted Aircraft

Aviation Week and Space Technology, the industry’s leading magazine, has been publishing “pilot reports,” on new aircraft for decades. Its pilot report on an aircraft called Centaur ⁠was the first in which the pilot doing the test never touched the controls. Centaur is an optionally-piloted aircraft, or OPA.

The reporter conducted the test while sitting in the back seat of the small, twin engine aircraft. Up front sat a person acting as the safety pilot, his arms calmly resting on his lap. Sitting beside him, in what is ordinarily the co-pilot’s seat, was an engineered series of linkages, actuators, and servos. The safety pilot pulled a lever to engage the mechanisms, and they began moving the pilot’s control stick and pressing the rudder pedals. The actuators are double and redundant; if one set fails another will immediately take over. The safety pilot can disengage the mechanism with a single pull of the lever if something goes wrong; unless something goes wrong he does not touch the controls.

In the back seat, the “operator,” commanded the plane through a laptop, using an interface identical to that of the ground control station for an unmanned vehicle. Through the screen, he could change altitude, fly to waypoints, takeoff or land. Pushing the “launch” button began an autonomous takeoff. The computer held the brakes, pushed the throttles forward, checked the engines and instruments, and released the brakes for the takeoff roll. The plane accelerated, took to the air, and began to climb out on a semi-autonomous flight.

Continue reading “Toward The Optionally Piloted Aircraft”

Robotic Tabletop

Remember pin art? That’s the little box full of pins that you can push something into and the pins take on the shape. You usually use your hand, but any small object works (including, if you are brave enough, your face). [Sean Follmer] (formerly at the MIT Media Lab) developed the reverse of this: a surface made of pins driven by motors. Under computer control, the surface can take on shapes all by itself.

The square pins can be seen in the video below moving and manipulating blocks and using them to build structures out of the blocks. By using the right sequence of pin motions, the blocks can be flipped and even stacked. Magnetic blocks offer even more options.

Continue reading “Robotic Tabletop”

The Gaze-Controlled Wheelchair That Won The Hackaday Prize

The 2015 Hackaday Prize challenged people to build something that matters. Specifically, to solve a problem faced by a lot of people and to make the solution as open as possible. If the average hacker can build it, it puts the power to vastly improve someone’s life in their hands. This is a perfect example of how powerful Open Design can be.

Patrick Joyce, Steve Evans, and David Hopkinson, developed a way to control an electric wheelchair using eye movements. The project, called Eyedrivomatic, is a set of non-invasive hardware modules that connect the wheelchair joystick with existing Eyegaze technology.

You’re probably already familiar with Eyegaze, which allows people suffering from diseases like MND/ALS to speak through a computer using nothing but their eyes. Eyedrivomatic extends this gaze control to drive a wheelchair. The catch is that the wheelchair’s user may not actually own the chair, and so permanent modifications cannot be made.

Thus Eyedrivomatic connects a wheelchair to the existing Eyegaze hardware without permanently altering either. This has never been done before, and the high level to which the team executed this project netted them the Grand Prize of the 2015 Hackaday Prize. The team will receive their choice of a Trip into Space or $196,883.

Check out their acceptance video, then join us after the break to learn what went into this amazing undertaking.

Continue reading “The Gaze-Controlled Wheelchair That Won The Hackaday Prize”