Direction Projection Is A Beacon In The Night

Navigating with your phone can be a hassle: the phone displays a tiny map that you’re never supposed to look at while driving, but of course you do. [Mikeasaurus] has the ultimate solution: Direction Projection! Mike has created an augmented reality system with no glass heads-up display, and no goggles ala Microsoft Hololens. The road ahead is his canvas. A standard projector mounted atop his car displays maps and turn indicators, all from his phone. Linking the phone and projection system would normally involve HDMI or analog video cables strung through the roof. [Mikeasaurus] simplifies that by using a Chromecast, which allows him to stream his phone’s screen over WiFi.

rooftop2The projector itself is the HD25-LV, a 3500 Lumen model from Optima. the HD25-LV is capable of 1080p, though in this situation, brightness is much more important than resolution. [Mikeasaurus] mounted the projector along with a gel cell battery and 900 watt DC to AC  inverter to power it. A mobile WiFi hotspot fills out the rooftop kit. Leaving an expensive setup like that on top of a car is a recipe for disaster – be it from rain, rocks, or theft. [Mikeasaurus] thought ahead and strapped his setup down inside a roof mounted cargo box. A plastic covered hole in the front of the box allows the projector to shoot down on the road while protecting its lens. We’d want to add a vent and fan to ensure that projector gets a bit of airflow as well.

On the road, the system actually works. Understandably, it’s not going to work very well during the day, but at night the system really shines! Just don’t tailgate – you wouldn’t want the driver in front of you to know exactly where you’re going, would you?

Continue reading “Direction Projection Is A Beacon In The Night”

Printing Photorealistic Images On 3D Objects

Hydrographic Printing is a technique of transferring colored inks on a film to the surface of an object. The film is placed on water and activated with a chemical that allows it to adhere to an object being physically pushed onto it. Researchers at Zhejiang University and Columbia University have taken hydrographic printing to the next level (pdf link). In a technical paper to be presented at ACM SIGGRAPH 2015 in August, they explain how they developed a computational method to create complex patterns that are precisely aligned to the object.

Typically, repetitive patterns are used because the object stretches the adhesive film; anything complex would distort during this subjective process. It’s commonly used to decorate car parts, especially rims and grills. If you’ve ever seen a carbon-fiber pattern without the actual fiber, it’s probably been applied with hydrographic printing.

print_tThe physical setup for this hack is fairly simple: a vat of water, a linear motor attached to a gripper, and a Kinect. The object is attached to the gripper. The Kinect measures its location and orientation. This data is applied to a 3D-scan of the object along with the desired texture map to be printed onto it. A program creates a virtual simulation of the printing process, outputting a specific pattern onto the film that accounts for the warping inherent to the process. The pattern is then printed onto the film using an ordinary inkjet printer.

The tiger mask is our personal favorite, along with the leopard cat. They illustrate just how complex the surface patterns can get using single or multiple immersions, respectively. This system also accounts for objects of a variety of shapes and sizes, though the researchers admit there is a physical limit to how concave the parts of an object can be. Colors will fade or the film will split if stretched too thin. Texture mapping can now be physically realized in a simple yet effective way, with amazing results.

Continue reading “Printing Photorealistic Images On 3D Objects”

Racing The Beam With Super Hexagon

Early game consoles like the Atari 2600 had a very, very limited amount of RAM. There wasn’t even enough RAM for all the pixels on the screen; instead, pixels were generated by the CPU as they were being drawn. It’s playing with scanlines and colorbusts with code, something we’re now calling. ‘racing the beam’ for some reason.

[Sam] is in the middle of an EE degree right now, and for a digital design class he needed to write some Verilog. At the time he was addicted to the game Super Hexagon, and the game mechanics are simple enough for an FPGA. He built his own implementation, but not one with framebuffers. He’s using a pipelined approach where each pixel’s value is calculated just a few clock cycles before it’s displayed. It vastly reduces the memory requirements, on his Altera DE1 board compared to the framebuffer approach.

Video below.

Continue reading “Racing The Beam With Super Hexagon”

Hackaday Prize Entry: A Pic32 Game Console

The official theme of the 2015 Hackaday Prize is to build something that matters. Solving the challenges facing the world is hard, and retro video games, despite what you read on Hackaday, do not matter.

That doesn’t mean there’s not space for the weird, esoteric builds out there; we have a best product prize that will dump $100k, a six month residency in the Hackaday Design Lab, and contacts with a lot of engineers with expertise in manufacturing. [Alex]’s extremely ow cost game console on a Pic32 is exactly what this prize category is looking for.

[Alex]’s project – XORYA – is based on the Pic32MX170F256, a chip that runs up to 50MHz, has 256kB of flash, and a full 64k of RAM. This is far beyond what the guys at Atari imagined back in the 70s, allowing the XORYA to have some amazing graphics.

Right now most of the build is dedicated to fleshing out the video system, and [Alex] has a great demo: rendering the Mandelbrot set in real time in 16 colors on an NTSC display with a resolution of 160×100. That’s a single-chip game console that’s right up there with the Uzebox, and a great example of the potential of the best product category for this year’s Hackaday Prize.


The 2015 Hackaday Prize is sponsored by:

Super Simple Cat Feeder

Sometimes, along comes a hack that is just that. A kludged collection of parts thrown together quickly to solve some problem. [mightysinetheta]’s Upcycled Cat Feeder is just that – no pretensions.

It’s a cat feeder built out of a drill, wall switch and mechanical clock timer for under $10. Pretty much the simplest electric cat feeder you can make. Survives power outages just fine, is single serving, but due to the noise and motion it makes, it is a perfect Pavlovian trainer for the cat. The best way to describe it is as a Rube Goldberg machine.

Set the timer for the planned feed time (up to 12 hours in advance). At the appointed time, the timer triggers, the drill rotates, the old, broken screwdriver chucked in the drill turns. The cord tied to the screwdriver winds up like a winch. This pulls up the lid covering the cat’s dinner plate. The noisy drill announces it’s dinner time. When fully raised, the lid pushes up a short piece of PCV pipe. This flips a switch, that shuts off the drill. If you need build instructions, fear not. [mightysinetheta] has detailed build instructions although the pictures are probably all you’ll need.

Check the video after the break.

Continue reading “Super Simple Cat Feeder”

Inside The Amazon Dash Button

The Amazon Dash Button is a tiny WiFi-enabled device that’s a simple button with a logo on the front. If you get the Tide-branded version, simply press the button and a bottle of laundry detergent will show up at your door in a few days. Get the Huggies-branded version, and a box of diapers will show up. Get the sugar-free Haribo gummi bear-branded version, and horrible evil will be at your doorstep shortly.

[Matt] picked up one of these Dash Buttons for 99 cents, and since a button completely dedicated to buying detergent wasn’t a priority, he decided to tear it apart.

The FCC ID reveals the Amazon Dash Button is a WiFi device, despite rumors of it having a Bluetooth radio. It’s powered by a single AA battery, and [Matt] posted pictures of the entire board.

Since this piece of Amazon electronics is being sold for 99 cents, whatever WiFi radio chip is inside the Dash Button could be used for some very interesting applications. If you have an idea of what chips are being used in [Matt]’s pictures, leave a note in the comments.

Retrotechtacular: Gone Fission

This week’s film begins as abruptly as the Atomic Age itself, though it wasn’t produced by General Electric until 1952. No time is wasted in getting to the point of the thing, which is to explain the frightening force of nuclear physics clearly and simply through friendly animations.

[Dr. Atom] from the Bohr Modeling Agency describes what’s going on in his head—the elementary physics of protons, neutrons, and electrons. He explains that atoms can be categorized into families, with uranium weighing in as the heaviest element at the time. While most atoms are stable, some, like radium, are radioactive. This evidently means it stays up all night doing the Charleston and throwing off neutrons and protons in the process of jumping between atomic families. [Dr. Atom] calls this behavior natural transmutation.

Artificial transmutation became a thing in the 1930s after scientists converted nitrogen into oxygen. After a couple of celebratory beers, they decided to fire a neutron at a uranium nucleus just to see what happened. The result is known as nuclear fission. This experiment revealed more about the binding force present in nuclei and the chain reaction of atomic explosions that takes place. It seemed only natural to weaponize this technology. But under the right conditions, a reactor pile made from graphite blocks interspersed with U-235 and -238 rods is a powerful and effective source of energy. Furthermore, radioactive isotopes have advanced the fields of agriculture, industry, medicine, and biochemistry.

Continue reading “Retrotechtacular: Gone Fission”