Here is a great introduction to a practical application of electromagnetic theory—the field telephone. It’s a training film from 1961 that covers the sound-powered, local battery, and common battery systems along with the six basic components they use: generators, ringers, transmitters, receivers, induction coils, and capacitors.
Clear illustrations and smart narration are the hallmarks of these Army training films, and this one begins with a great explanation of generator theory. The phone’s ringer uses electromagnetic attraction and repulsion to do the mechanical work of striking the bells. Similarly, the sound waves generated by a caller’s speech move an armature to create an alternating electrical current that is transmitted and converted back to sound waves on the receiving end.
In the local battery system, the battery pushes pulsating DC to carry the voice transmission. An induction coil increases the capabilities of this system, but capacitors are required to filter out the frequencies that would overload the receiver, passing only the higher speech frequencies.
In order for several stations to communicate, the use of a switchboard is required to patch the calls through. There are many advantages of a common battery system with regard to call switching: no local battery is necessary, nor is a generator needed at each station. Calls are easier to place, and communication is much faster.
Continue reading “Retrotechtacular: Basic Telephony In The Field”





We’re not messing with you; all you need to win these early prizes is an idea. One of the most powerful pieces of the Hackaday Prize is the pollination of thought. Your idea might be the tipping point for someone else’s breakthrough or vice-versa. Start a project on 







