Developed On Hackaday: We Have Pixels!

It has been a while since we kept you informed about the current state of the Mooltipass project. Well, several days ago we finally received the PCBs we got produced at Seeedstudio. Keep in mind that this first version (shown in the picture above) is only meant to check that the chosen components can suit our needs while our mechanical contributors work on their designs. Moreover, we may add empty footprints for our readers that may want to hack the device.

After a few hours of soldering and a few days of coding, we finally got a basic firmware running. The OLED screen is easily readable and has an amazing contrast (the picture doesn’t do it justice). So far we checked all basic functionalities of the on-board components and it’ll still take a few days/weeks to be certain that we can settle with them. We are therefore starting to ship a few platforms to the firmware developers that want to work on the core functions of the Mooltipass. So if you’re an experienced C developer and have some spare time, you may get onboard by contacting me at mathieu[at]hackaday[dot]com or by joining the Mooltipass Google Group.

In a few days we will publish the designs that our mechanical guys came up with and we’ll ask you to let us know which ones are your favorites. Depending on how things will go, we may produce PCBs for several of them to select our final design based on user experience and ease of use. We look forward to hearing your feedback in the comments section below!

SquareWear 2.0 A Wearable Opensource Arduino

squarewear2_annotation-1024x577

Are you guys tired of redesigned Arduinos yet? Usually we are, but [Ray] just released the SquareWear 2.0, and we have to admit, it’s a pretty slick design.

It’s an update to SquareWear 1.1 which we covered a year ago. That version made use of a 18F14K50 microcontroller, measured a tiny 1.6″ x 1.6″ and could easily be sewn into wearable circuits. But after receiving lots of requests to design a new Arduino based board, [Ray] obliged and made v2.0.

The new SquareWear is slightly bigger, measuring in at 1.7″ x 1.7″, but it packs a much bigger and more functional punch — just check out the image schematic above! The only catch is it doesn’t actually have a USB-to-serial chip on-board, which is why [Ray] was able to get the board so small and inexpensive. Instead it simulates USB in the software using the V-USB library. That method is much slower but still functional. To perform serial communication through the USB port it uses the onboard USBasp bootloader.

The board also features large through-holes to accommodate sew-able pin pads, making it super easy to integrate this into fabric!

For a complete explanation of the SquareWear 2.0, check out the video after the break.

Continue reading “SquareWear 2.0 A Wearable Opensource Arduino”

Autonomous Quadcopter Fits In The Palm Of Your Hand

[Horiken Engineering], which is made up of engineering students at the department of aerospace at the University of Tokyo have developed an autonomous quadcopter that requires no external control — and its tiny. By using two cameras and a sonar sensor, the quadcopter is capable of flying by itself due to its ability to process the data from the on-board sensors. To do the complex data processing fast enough to fly, it is using a Cortex-M4 MCU, a Spartan-6 FPGA, and 64MBs of DDRSDRAM. It also has the normal parts of a quadcopter, plus gyros, a 3D printed frame and a 3-axis compass. The following video demonstrates the quadcopter’s tracking ability above a static image (or a way point). The data you see in real-time is only the flight log, as the quadcopter receives no signal — it can only transmit data.

Continue reading “Autonomous Quadcopter Fits In The Palm Of Your Hand”

[Bunnie]’s Open Source Laptop Is Ready For Production

Just over a year ago, [Bunnie Huang] announced he was working on a very ambitious personal project: a completely open source laptop. Now, with help from his hardware hacker compatriot [xobs], this laptop named Novena is nearly complete.

Before setting out on this project, [Bunnie] had some must-have requirements for the design. Most importantly, all the components should be free of NDA encumbrances. This isn’t an easy task; an SoC vendor with documentation sitting around on their servers is rare as hen’s teeth, and Freescale was the only vendor that fit the bill. Secondly, the entire laptop should be entirely open source. [Bunnie] wasn’t able to find an open source GPU, so using hardware video decoding on his laptop requires a binary blob. Software decoding works just fine, though.

Furthermore, this laptop is designed for both security and hardware hacking. Two Ethernet ports (one 1Gbit and the second 100Mbit), a USB OTG port, and a Spartan 6 FPGA put this laptop in a class all by itself. The main board includes 8x analog inputs, 8x digital I/O ports, 8 PWM pins, and a Raspberry Pi-compatible header for some real hardware hackery.

As for the specs of the laptop, they’re respectable for a high-end tablet.  The CPU is a Freescale iMX6, a quad-core ARM Cortex-A9 running at 1.2 GHz. The RAM is upgradeable to 4GB, an internal SATA-II port will easily accommodate a huge SSD, the ability to use an LCD adapter board to run the 13-inch 2560×1700 LED panel [Bunnie] is using. The power system is intended to be modular, with batteries provided by run-of-the-mill RC Lipo packs. For complete specs, check out the wiki.

Despite the high price and relatively low performance (compared to i7 laptop) of [Bunnie]’s laptop, there has been a lot of interest in spinning a few thousand boards and sending them off to be pick and placed. There’s going to be a crowd funding campaign for Novena sometime in late February or March based around an “all-in-one PC with a battery” form factor. There’s no exact figure on what the price of a Novena will be, but it goes without saying a lot will be sold regardless.

If you want the latest updates, the best place to go would be the official Novena twitter: @novenakosagi

Bicycle Powered Sander

sanding

[Andy] does a lot of framing and needed a way to sand down pieces at proper angles. He goes by the moniker [Organikmechanic] on YouTube, and as such is trying to rely less and less on electricity — so he’s created this hand-powered sander using components from a bicycle.

His first iteration just used the spindle off of a bicycle wheel as the main axle, but he quickly found it wasn’t rigid enough for the sanding disk. Instead he decided to make use of the entire crankshaft assembly off of an old bicycle. He cut the frame down to size, removed one of the pedals, and shortened the other one to a more useful hand cranking length. The main gear of the bicycle provides a large and sturdy mounting surface for his home-made sanding disk which consists of a large piece of rounded chipboard.

It’s a pretty clever use of recycled parts — but what do you think? Are you environmentally inclined enough to give up your power tools? A full video explanation of the project is after the break.

Continue reading “Bicycle Powered Sander”

3kW Electric Scooter

IMG_20131228_012222

[Exco] had been playing around with the idea of building an electric scooter for a while now, and over the holidays he decided to just do it.

Similar to the motorized long board we shared last month, this scooter makes use of an RC hobby motor — in this case, a 63mm 3kW brushless outrunner (for a RC plane), coupled with a 100A ESC. He bought the scooter (“kick board”) off eBay for cheap, and spent a few days in the machine shop modifying it. It has better wheels now, and custom milled aluminum brackets for mounting the motor. The drive system uses a belt and pulley with a sliding rail to provide tensioning.

To power it, he bought a bunch of 2.5Ah, 18V LiPo packs on eBay originally from a Makita drill set. He then sorted out the cells, removed the dead ones, and soldered everything together for his own Frankenstein pack to balance them. The final configuration features twenty-one 18650 lithium cells. He even shrink wrapped it, which makes it look relatively professional!

It’s controlled by a push-button potentiometer hooked up to the ESC. Theoretical top speed is about 27km/h @ 1285RPM, and they managed to get it up to 25km/h in a real test. There’s more info over at the Endless Sphere forum, and we’ve got two test videos for you after the break.

Continue reading “3kW Electric Scooter”

Custom Workbench Computer

IMG_20140105_154013_152

[Michael Solar] recently bought a house with his wife, and now with his first garage he’s started building his workshop man-cave. First order of business was a workbench — second, a computer built into it.

He started with an old Dell tower, but found it took too much space underneath the work bench — so he set to downsizing it. Using pine boards he created a stepped wooden enclosure that utilizes the space under the front lip of the work bench. He’s mounted the motherboard using standoff pins and created cutouts in the back for the power supply and outputs. It features three intake and two exhaust fans — currently without filters, although he plans on adding them soon, otherwise he’ll end up with a sawdust filled computer!

It’s a rather simple project, but it gives a great introduction into making your own custom computer case, and provides some handy lessons learned near the end. It might not be a flashy case mod like this heavy metal computer desk, but it is certainly functional and robust!