Absolutely Everything About The Coleco Adam, 8-bit Home Computer

[Thom Cherryhomes] shared with us an incredible resource for anyone curious about the Coleco Adam, one of the big might-have-been home computers of the 80s. There’s a monstrous 4-hour deep dive video (see the video description for a comprehensive chapter index) that makes a fantastic reference for anyone wanting to see the Coleco Adam and all of its features in action, in the context of 8-bit home computing in the 80s.

[Image by Akbkuku, CC BY 4.0]
The Adam aimed to be an all-in-one computer package, targeting a family audience for both education and gaming purposes, with a price target around $600, a pretty compelling pitch.

The video is a serious in-depth look at the Adam, providing practical demonstrations of everything in various scenarios. This includes showcasing commercials from the period, detailing the system’s specs and history, explaining the Adam’s appeal, discussing specific features, comparing advertisement promises to real costs, and giving a step-by-step tutorial on how to use the system. All of the talk notes are available as well, providing a great companion to the chapter index.

Manufactured by the same Coleco responsible for the ColecoVision gaming console, the Adam had great specs, a great price, and a compelling array of features. Sadly, it was let down badly at launch and Coleco never recovered. However, the Adam remains of interest in the retrocomputing scene and we’ve even seen more than one effort to convert the Adam’s keyboard to USB.

Continue reading “Absolutely Everything About The Coleco Adam, 8-bit Home Computer”

Hacked Tea Lights Flicker Just Right

Flickering LED tea lights are a friendly and safe alternative to having flaming little pots of wax situated around your home, but sometimes the flicker scheme leaves something to be desired.

[Roger Rabbit] found a set of six such rechargeable tea lights with a base and a remote, and replaced the controller with an ATtiny85 for a more realistic flicker. When [Roger] opened up one of the candles, they found an IR sensor for the remote, a driver chip, and of course, an LED. No surprises there.

After desoldering the original controller, [Roger] wired in a socketed ATtiny85 on a piece of perfboard and hooked everything back up.The coolest part of this hack might just be the fact that there’s a perfect little compartment for the new microcontroller. How about that?

The Arduino code for this project is available in the Git repository, and the wonderful instruction manual is available in PDF form. Be sure to check out the brief video after the break.

You like these flickering LED candles? Here’s one you can blow out.

Continue reading “Hacked Tea Lights Flicker Just Right”

The Raspberry Pi 5 Can Use External Graphics Cards Now

The Raspberry Pi line is full of capable compact computers, but they’ve never been the strongest in the bunch when it comes to graphical output. Nor have they been particularly expandable in that regard. However, that’s all beginning to change, with [Jeff Geerling] reporting success getting external GPUs to work on the Raspberry Pi 5.

Unlike previous Raspberry Pis, the Raspberry Pi 5 has a less quirky implementation for its PCI Express bus. Previous editions have thrown up issues when trying to work with GPUs, but [Jeff] has found much more success this time around. He’s gotten an AMD RX 460 to work with the setup, and has got it running quite a bit of the glmark2 test regime. He’s working on a variety of other AMD cards too, but suspects NVidia parts could be harder due to some initialization issues that are proving difficult to quash.

It still takes some funky adapters and a lot of work, but finally GPUs are starting to work with the platform. Keep up with his list of card trials on the PiPCI website. We’ve seen [Jeff]’s work with earlier iterations of the Raspberry Pi before, too. Video after the break.

Continue reading “The Raspberry Pi 5 Can Use External Graphics Cards Now”

The Minimum Required For A Film Camera

Film cameras can be complex and exquisitely-crafted masterpieces of analogue technology. But at their very simplest they need be little more than a light-proof box with a piece of film at the back of it, and some kind of lens or pinhole with a shutter. [ChickenCrimpy] adds the most basic of 35 mm cartridge to create what he calls the Minimum Viable Camera. It’s a half-frame 35 mm pinhole film camera with the simplest possible construction.

A grainy B&W picture of a bird perched on a railingIt can be built from almost any flat light-proof 3 mm thick stock, though something that you can run through a laser cutter is probably ideal. Once snapped together to make to box-like structure, tape is added along the joins for light-proofing. The film is reeled from a full 35 mm cartridge to an empty one, and cranked back frame-by-frame by means of a wooden key that engages with the spindle.

There’s no lens, instead this is a pinhole camera, and the shutter is a piece of the stock held on the front of the camera with bolts and butterfly nuts. Taking a photo is as simple as pointing the device at the subject and lifting the shutter away for a few seconds. There’s a video overview for the project which we’ve placed below the break.

It’s true that this camera needs a moment in the darkroom to load, but we like its extreme simplicity and the ethereal and grainy pictures it produces. If you fancy an introduction to 35 mm photography you could definitely do worse.

Continue reading “The Minimum Required For A Film Camera”

End Of An Era: Popular Science Shutters Magazine

Just three years after the iconic magazine abandoned its print version and went all-digital, Popular Science is now halting its subscription service entirely. The brand itself will live on — their site will still run tech stories and news articles, and they have two podcasts that will keep getting new episodes — but no more quarterly releases. While you can’t complain too much about a 151 year run, it’s still sad to see what was once such an influential publication slowly become just another cog in the content mill.

Started as a monthly magazine all the way back in 1872, Popular Science offered a hopeful vision of what was over the horizon. It didn’t present a fanciful version of what the next 100 years would look like, but rather, tried to read the tea leaves of cutting edge technology to offer a glimpse of what the next decade or so might hold. Flip through a few issues from the 1950s and 60s, and you won’t see pulpy stories about humanity conquering the stars or building a time machine. Instead the editors got readers ready for a day when they’d drive cars with warbird-derived turbochargers, and enjoy more powerful tools once transistor technology allowed for widespread use of small brushless motors. It wasn’t just armchair engineering either, issues would often include articles written by the engineers and researchers that were on the front lines. Continue reading “End Of An Era: Popular Science Shutters Magazine”

Autonomous Excavator Builds Stone Wall Algorithmically

In a move that aims to further the circular economy of the construction industry, researchers at ETH Zurich have let an autonomous excavator loose on a big pile of boulders and reclaimed concrete. The goal? To build a 20 foot (6 meter) and 213 ft (65 m) long dry-stone wall as part of a park where the landscape was digitally planned, and the earth autonomously excavated.

The coolest thing about the Menzi Muck excavator is the software, which is explored in the video after the break. Thanks to a bunch of sensors, the excavator can not only draw a 3D map of the site, it can find in situ boulders dotting the landscape and incorporate them into the wall.

Machine vision allows the excavator to grab the stones and assess their size and shape, as well as approximate their weight and center of gravity.

Then, an algorithm determines the best place for each stone and places them there without using mortar or cement. Menzi Muck is capable of number-crunching 20 to 30 stones at a time, which coincidentally is about the number in one delivery.

Want to build your own excavator? Check out this finely-detailed R/C excavator for top-notch inspiration.

Continue reading “Autonomous Excavator Builds Stone Wall Algorithmically”

Falsified Photos: Fooling Adobe’s Cryptographically-Signed Metadata

Last week, we wrote about the Leica M11-P, the world’s first camera with Adobe’s Content Authenticity Initiative (CAI) credentials baked into every shot. Essentially, each file is signed with Leica’s encryption key such that any changes to the image, whether edits to the photo itself or the metadata, are tracked. The goal is to not only prove ownership, but that photos are real — not tampered with or AI-generated. At least, that’s the main selling point.

Although the CAI has been around since 2019, it’s adoption is far from widespread. Only a handful of programs support it, although this list includes Photoshop, and its unlikely anybody outside the professional photography space was aware of it until recently. This isn’t too surprising, as it really isn’t relevant to the casual shooter — when I take a shot to upload to Instagram, I’m rarely thinking about whether or not I’ll need cryptographic proof that the photo wasn’t edited — usually adding #nofilter to the description is enough. Where the CAI is supposed to shine, however, is in the world of photojournalism. The idea is that a photographer can capture an image that is signed at the time of creation and maintains a tamper-proof log of any edits made. When the final image is sold to a news publisher or viewed by a reader online, they are able to view that data.

At this point, there are two thoughts you might have (or, at least, there are two thoughts I had upon learning about the CAI)

  1. Do I care that a photo is cryptographically signed?
  2. This sounds easy to break.

Well, after some messing around with the CAI tools, I have some answers for you.

  1. No, you don’t.
  2. Yes, it is.

Continue reading “Falsified Photos: Fooling Adobe’s Cryptographically-Signed Metadata”