Building A Rubik’s Cube That Solves Itself

If you’re really good, it’s possible to solve a Rubik’s Cube in under 10 seconds. For the rest of us, though, it can be an exceedingly tedious task. For that reason, you might like a Rubik’s Cube that can solve itself, like the one [zeroshot] is trying to build.

What [zeroshot] built is essentially a very small robotic platform inside the center section of an existing Rubik’s Cube. It uses five gear motors that are assembled into the cube’s core, which have enough torque to rotate the individual faces quite easily. While six motors would allow more efficient solves in fewer moves, it was easier to fit just five motors inside the cube, and they’d still get the job done. The motors are controlled by an ESP32, hooked up to a bank of DRV8833 motor drivers. For now, the cube is still a work in progress. While the core can move the faces, [zeroshot] is trying to figure out how to best tackle the problem of feedback in the limited space available. After all, the ESP32 needs to know where the faces are if it’s to make the right moves to reach a solved state. Soldering wires between individual modules can be quite space inefficient; this is one build that might benefit from being integrated onto a single tiny PCB.

We’re used to seeing robots that grab a Rubik’s cube and solve it for you; we haven’t seen a lot of cubes that solve themselves. Regardless, this feat has been achieved before. Video after the break.

Continue reading “Building A Rubik’s Cube That Solves Itself”

Building A DIY Ryzen-Based PC!

This project gives a whole new meaning to DIY PC. We don’t know how capable you were as a teenager, but could you have designed your own Ryzen-based mini PC?

Whilst making repairs to laptop internals, [Dominik Baroński] was busy taking notes. Modern super-integrated laptop PCs have reached the point where all the functions of a complete PC are embedded in a single chip. But it’s a big, complicated chip with very specific feeding and care needs. Once you’ve figured out what it needs, it ‘merely’ remains to supply it power, hook up some DDR4 RAM, PCIe storage, and some USB ports, and you’re away. It sounds easy when you say it like that, but do not underestimate how difficult it is to create such a board—or even to populate it by hand—yet that’s precisely what [Dominik] has achieved.

Continue reading “Building A DIY Ryzen-Based PC!”

An aluminium box is visible on the left side of the image, with a power supply on the right side, and a lamp ballast in the middle. A man's hand is holding the end of an optical fiber in the lower left corner, and it is emitting a white light.

Building A Xenon Lamp For Spectroscopy

Before a spectrometer can do any useful work, it needs to be calibrated to identify wavelengths correctly. This is usually done by detecting several characteristic peaks or dips in a well-known light source and using these as a reference to identify other wavelengths. The most common reference for hobbyists is the pair of peaks produced by a mercury-vapor fluorescent light, but a more versatile option is a xenon-bulb light source, such as [Markus Bindhammer] made in his latest video.

A xenon gas discharge produces a wide band of wavelengths, which makes it a useful illumination source for absorbance spectroscopy. Even better, Xenon also has several characteristic spikes in the infrared region. For his light source, [Markus] used an H7 xenon bulb meant for a vehicle headlight. The bulb sits in the center of the source, with a concave mirror behind it and a pair of converging lenses in front of it. The converging lenses focus the light onto the end of an optical cable made of PMMA to better transmit UV. A few aluminum brackets hold all the parts in place. The concave mirror is made out of a cut-open section of aluminum pipe. The entire setup is mounted inside an aluminum case, with a fan on one end for cooling. To keep stray light out of the case, a light trap covers the fan’s outlet.

[Markus] hadn’t yet tested the light source with his unique spectrometer, but it looks as though it should work nicely. We’ve seen a wide variety of amateur spectrometers here, but it’s also illuminating to take a look at commercial scientific light sources.

Multitasking On The Humble Z80 CPU

Multitasking is something we take for granted these days. Just about every computer we use, from our desktops to our phones, is capable of multitasking. It might sound silly to implement multitasking on lower-spec machines from many decades ago, given their limited resources, but it can be done, as [bchiha] demonstrates on a Z80-based machine.

[bchiha] has achieved pre-emptive multitasking on the TEC-1G Z80 computer, a modern reimagining of the classic Talking Electronics TEC-1 from the 1980s.  The proof of concept code allows running up to eight separate tasks at once. Task switching runs on interrupts, triggered at approximately 50 Hz. When an interrupt fires, the CPU registers are transferred onto that task’s stack, and the next task’s stack is swapped to the stack pointer to allow execution of the new task to proceed. There is an overhead, of course, with [bchiha] noting that the task swapping routine itself takes about 430 clock cycles to run in between tasks.

Continue reading “Multitasking On The Humble Z80 CPU”

An Audio Brick For Your Smart Home

If you’ve ever wanted to pump sound to all the rooms of your house, you might use any one of a number of commercial solutions. Or, you could go the more DIY route and whip up something like the Esparagus Audio Brick built by [Andriy]. 

The concept is simple—it’s a small unit, roughly the size of a brick, which streams high-quality audio. It’s based around an ESP32, which pulls in digital audio over Wi-Fi or Ethernet. The microcontroller is hooked up to a TAS5825M DAC, which comes with a built-in amplifier for convenience. The Esparagus is designed for integration with Home Assistant, allowing for easy control as part of a smart home setup. It’s also compatible with Spotify Connect, AirPlay, and Snapcast—the latter of which provides excellent sync when using multiple units across several rooms.

Design files are available on Github for the curious. We’ve seen other neat projects in this space, before, too—like the charmingly-named OtterCast. Video after the break.

Continue reading “An Audio Brick For Your Smart Home”

Building A PV Solar-Powered Quadcopter

The solar-powered quadcopter from below. (Credit: Luke Maximo Bell)
The solar-powered quadcopter from below. (Credit: Luke Maximo Bell)

One of the most frustrating parts about flying a quadcopter is having to regularly swap battery packs, as this massively limits what you can do with said quadcopter, never mind its effective range. Obviously, having the sun power said quadcopter during a nice sunny day would be a much better experience, but how workable is this really? While airplanes have used solar power to stay aloft practically indefinitely, a quadcopter needs significantly more power, so is it even possible? Recently, [Luke Maximo Bell] set out to give it a whirl.

His quadcopter build uses a large but very lightweight carbon fiber frame, with large 18″ propellers. This provides the required space and lift for the solar panel array, which uses 27 razor-thin panels in a 9×3 grid configuration supported by a lightweight support frame.

Due to the lightweight construction, the resulting quadcopter actually managed to fly using just the direct power from the panels. It should be noted however that it is an exceedingly fragile design, to the point that [Luke]’s cat broke a panel in the array when walking over it while it was lying upside-down on a table.

After this proof of concept, [Luke] intends to add more panels, as well as a battery to provide some buffer and autonomous flying hardware, with the goal of challenging the world record for the longest flying drone. For the rest of us, this might make for a pretty cool idea for a LoRaWAN mesh node or similar, where altitude and endurance would make for a great combo.

Continue reading “Building A PV Solar-Powered Quadcopter”

2025 Component Abuse Challenge: A Transistor As A Voltage Reference

For our 2025 Component Abuse Challenge there have been a set of entries which merely use a component for a purpose it wasn’t quite intended, and another which push misuse of a part into definite abuse territory, which damages or fundamentally changes it. [Ken Yap]’s use of a transistor base-emitter junction as a voltage reference certainly fits into the latter category.

If you forward bias  a base-emitter junction, it will behave as a diode, which could be used as a roughly 0.7 volt reference. But this project is far more fun than that, because it runs the junctions in reverse biased breakdown mode. Using one of those cheap grab bags of transistor seconds, he finds that devices of the same type maintain the same voltage, which for the NPN devices he has works out at 9.5 volts and the PNP at 6.5. We’re told it damages their operation as transistors, but with a grab bag, that’s not quite the issue.

We’ve got a few days left before the end of the contest, and we’re sure you can think of something worth entering. Why not give it a go!