Things are heating up in the world of nuclear fusion research, with most fundamental issues resolved and an increasing rate of announcements being made regarding commercial fusion power. China’s CNNC is one of the most recent voices here, with their statement that they expect to have commercial nuclear fusion plants online by 2050. Although scarce on details, China is one of the leading nations when it comes to nuclear fusion research, with multiple large tokamaks, including the HL-2M and the upcoming CFETR which we covered a few years ago.

In addition to China’s fusion-related news, a German startup called Proxima Fusion announced their Stellaris commercial fusion plant design concept, with a targeted grid connection by the 2030s. Of note is that this involves a stellarator design, which has the major advantage of inherent plasma stability, dodging the confinement mode and Greenwald density issues that plague tokamaks. The Stellaris design is an evolution of the famous Wendelstein 7-X research stellarator at the Max Planck Institute.
While Wendelstein 7-X was not designed to produce power, it features everything from the complex coiled design and cooled divertors plus demonstrated long-term operation that a commercial reactor would need. This makes it quite likely that the coming decades we’ll be seeing the end spurt for commercial fusion power, with conceivably stellarators being the unlikely winner long before tokamaks cross the finish line.