Inside A Diamond Plant

While you tend to think of diamonds as ornamental gemstones, diamonds also have many important industrial uses, and many of those diamonds are now synthetic polycrystalline diamonds. How are they made? [JerryRigEverything] takes us behind the scenes at a diamond manufacturing facility, something you don’t get to see every day. Check out the giant presses that exert about a million pounds of pressure in the video below.

The process starts with diamond powder, which is just what it sounds like. Although you can get real diamond powder, most uses today start with synthetic diamonds. The powder has many uses in cosmetics and as an abrasive. But the video will combine it with cobalt and table salt to form diamond shapes.

Continue reading “Inside A Diamond Plant”

Illustrative models of collinear ferromagnetism, antiferromagnetism, and altermagnetism in crystal-structure real space and nonrelativistic electronic-structure momentum space. (Credit: Libor Šmejkal et al., Phys. Rev. X, 2022)

Nanoscale Imaging And Control Of Altermagnetism In MnTe

Altermagnetism is effectively a hybrid form of ferromagnetism and antiferromagnetism that might become very useful in magnetic storage as well as spintronics in general. In order to practically use it, we first need to be able to control the creation of these altermagnets, which is what researchers have now taken the first steps towards. The research paper by [O. J. Amin] et al. was published earlier this month in Nature. It builds upon the team’s earlier research, including the detection of altermagnetism in manganese telluride (MnTe). This new study uses the same material but uses a photoemission electron microscope (PEEM) with X-rays to image these nanoscale altermagnetic structures.

Continue reading “Nanoscale Imaging And Control Of Altermagnetism In MnTe”

An LCD, Touch Sensor, USB-C, And A Microcontroller For A Buck

[CNLohr] has been tinkering with some fun parts of late. He’d found out that ordinary LCD screens could be used as simple touch sensors, and he had to try it for himself. He ended up building a little doohickey that combined USB C, an LCD display, and a touch interface, all for under a buck. You can check out the video below.

The key to this build was the CH32V003 CPU. It’s a RISC-V microcontroller that runs at a healthy 48 MHz, and it costs just 10 cents in reasonable quantities. A PCB etched to mate with a USB C cable eliminates the need for a connector.

[CNLohr] then gave the board a three-digit 7-segment LCD display from Aliexpress, which can be had for around 21 cents if you buy 100 or more. He then figured out how to drive the LCDs with a nifty trick that let the microcontroller use the display as a crude touch sensor. All in all, the total bill of materials for one of these things comes out somewhere under a dollar in quantity.

It’s mostly a random assemblage of tech glued together for a demo, but it’s a fun project. It’s worth checking out even if it’s just to learn how to create an integral USB C port on your own PCBs. The way it’s achieved with the etched contacts and milled-out tabs is pure elegance. Files are on Github for the curious.

We’ve featured a ton of [CNLohr’s] work over the years; the clear keytar was a glowing highlight, as were his early discoveries in the depths of the ESP8266.

Continue reading “An LCD, Touch Sensor, USB-C, And A Microcontroller For A Buck”

The Bendix G-15 Runs 75,000 Lines Of Code

There’s a Blue Bendix in Texas, and thanks to [Usagi Electric] it’s the oldest operating computer in North America.  The Bendix G-15, a vacuum tube computer originally released in 1956, is now booting, and running code from paper tape. [David, aka Usagi] received the G-15 about a year ago from The System Source museum. The goal was to get the computer running so museum patrons could interact with a real tube computer. We’ve been following along since the project began.

[Usagi’s] latest G-15 video covers the last few problems on the road to running code. The biggest hurdle was the fact that the system wasn’t responding properly to the GO button on the typewriter. [Usagi] was able to isolate the issue down to a flip flop and then to a particular signal on an AND gate — the RC signal. The gate appeared to be bad, but swapping the entire circuit card multiple times had no effect. Something else had to be going on.

Continue reading “The Bendix G-15 Runs 75,000 Lines Of Code”

Custom Firmware For Even Cheaper Bluetooth Thermometers

Readers may recall when we first covered the $5 Xiaomi LYWSD03MMC temperature and humidity sensor back in 2020. Prolific hacker [Aaron Christophel] wrote a custom firmware for the affordable gadget that was so capable and well implemented that it kicked off a whole new community.

It’s recently been brought to our attention that the Xiaomi thermometer has become so popular that clones have started popping up. Often sold under the Tuya brand, these versions look very similar to Xiaomi’s offering but can be had for as little as $1 each from the usual Chinese importers. Even better, they’ve got their very own open-source custom firmware.

The firmware comes from [pvvx], who also helms the most active fork of [Aaron]’s original firmware for the Xiaomi thermometer. Doing a bit of spot-checking between the repositories, it’s not immediately clear that any meaningful code is shared between the two projects. However, once installed, they offer similar capabilities to the user, such as integration with Home Assistant. Perhaps the most significant difference between the two projects is that, at least for the initial flash, you need to hook the Tuya units up to your computer with a USB serial adapter. Considering that one of the highlights of the Xiaomi custom firmware was its exceptionally easy wireless installation, this is a considerable step backward.

Below is a video from a few months back that [Maker’s Fun Duck] put together, where he takes apart one of these clones and shows the installation process for the custom firmware. Our overall impression is that it’s probably worth the few extra dollars to get the original Xiaomi hardware, although the display on the clone seems much brighter. In any event, we’re always happy to see the community coming up with free and open-source firmware for an otherwise locked-down gadget.

Continue reading “Custom Firmware For Even Cheaper Bluetooth Thermometers”

Intel Terminates X86S Initiative After Formation Of New Industry Group

Although the world of the X86 instruction set architecture (ISA) and related ecosystem is often accused of being ‘stale’ and ‘bloated’, we have seen a flurry of recent activity that looks to shake up and set the future course for what is still the main player for desktop, laptop and server systems. Via Tom’s Hardware comes the news that the controversial X86S initiative is now dead and buried. We reported on this proposal when it was first announced and a whitepaper released. This X86S proposal involved stripping 16- and 32-bit features along with rings 1 and 2, along with a host of other ‘legacy’ features.

This comes after the creation of a new x86 advisory group that brings together Intel, AMD, as well as a gaggle of industry giants ranging from HP and Lenovo to Microsoft and Meta. The goal here appears to be to cooperate on any changes and new features in the ISA, which is where the unilateral X86S proposal would clearly have been a poor fit. This means that while X86S is dead, some of the proposed changes may still make it into future x86 processors, much like how AMD’s 64-bit extensions to the ISA, except this time it’d be done in cooperation.

In an industry where competition from ARM especially is getting much stronger these days, it seems logical that x86-oriented companies would seek to cooperate rather than compete. It should also mean that for end users things will get less chaotic as a new Intel or AMD CPU will not suddenly sneak in incompatible extensions. Those of us who remember the fun of the 1990s when x86 CPUs were constantly trying to snipe each other with exclusive features (and unfortunate bugs) will probably appreciate this.

Building A Custom Swiss Army Knife

The Swiss Army knife is the most well-known multitool, combining a bunch of functionality into a compact package. [Jeff Gough] decided to build a custom example featuring a selection of his favorite tools.

He documents the build in a video series on YouTube (see below). [Jeff] decided to take on the project as a gift for his mother after she’d mentioned she’d wanted a Swiss Army-style knife with a horse’s hoof tool and finished in the classic shade of British Racing Green.

[Jeff] starts by disassembling an existing knife, taking care not to damage it in the process. He then makes and installs multiple custom tools, including the aforementioned horse hoof tool and a RADAR/NKS key for opening disabled toilets in the UK. He even crafts a bespoke Philips head screwdriver, too. Finally, he assembles everything back together and gives the build a beautiful green finish.

A Swiss Army knife can be a neat gift, but it’s even nicer when it’s got a personal touch like this one. We’ve featured some other nifty multitools before, too. Not all Swiss Army knives actually contain a, you know, knife. No kidding.

Continue reading “Building A Custom Swiss Army Knife”