China Claims Commercial Nuclear Fusion By 2050 As Germany Goes Stellarator

Things are heating up in the world of nuclear fusion research, with most fundamental issues resolved and an increasing rate of announcements being made regarding commercial fusion power. China’s CNNC is one of the most recent voices here, with their statement that they expect to have commercial nuclear fusion plants online by 2050. Although scarce on details, China is one of the leading nations when it comes to nuclear fusion research, with multiple large tokamaks, including the HL-2M and the upcoming CFETR which we covered a few years ago.

Stellaris stellarator. (Credit: Proxima Fusion)

In addition to China’s fusion-related news, a German startup called Proxima Fusion announced their Stellaris commercial fusion plant design concept, with a targeted grid connection by the 2030s. Of note is that this involves a stellarator design, which has the major advantage of inherent plasma stability, dodging the confinement mode and Greenwald density issues that plague tokamaks. The Stellaris design is an evolution of the famous Wendelstein 7-X research stellarator at the Max Planck Institute.

While Wendelstein 7-X was not designed to produce power, it features everything from the complex coiled design and cooled divertors plus demonstrated long-term operation that a commercial reactor would need. This makes it quite likely that the coming decades we’ll be seeing the end spurt for commercial fusion power, with conceivably stellarators being the unlikely winner long before tokamaks cross the finish line.

Speaking Computers From The 1970s

Talking computers are nothing these days. But in the old days, a computer that could speak was quite the novelty. Many computers from the 1970s and 1980s used an AY-3-8910 chip and [InazumaDenki] has been playing with one of these venerable chips. You can see (and hear) the results in the video below.

The chip uses PCM, and there are different ways to store and play sounds. The video shows how different they are and even looks at the output on the oscilloscope. The chip has three voices and was produced by General Instruments, the company that initially made PIC microcontrollers. It found its way into many classic arcade games, home computers, and games like Intellivision, Vectrex, the MSX, and ZX Spectrum. Soundcards for the TRS-80 Color Computer and the Apple II used these chips. The Atari ST used a variant from Yamaha, the YM2149F.

There’s some code for an ATmega, and the video says it is part one, so we expect to see more videos on this chip soon.

General instruments had other speech chips, and some of them are still around in emulated form. In fact, you can emulate the AY-3-8910 with little more than a Raspberry Pi.

Continue reading “Speaking Computers From The 1970s”

Build A Parametric Speaker Of Your Own

The loudspeaker on your home entertainment equipment is designed to project audio around the space in which it operates, if it’s not omnidirectional as such it can feel that way as the surroundings reflect the sound to you wherever you are. Making a directional speaker to project sound over a long distance is considerably more difficult than making one similar to your home speaker, and [Orange_Murker] is here with a solution. At the recent Hacker Hotel conference in the Netherlands, she presented an ultrasonic parametric speaker. It projects an extremely narrow beam of sound over a significant distance, but it’s not an audio frequency speaker at all.

Those of you familiar with radio will recognize its operation; an ultrasonic carrier is modulated with the audio to be projected, and the speaker transfers that to the air. Just like the diode detector in an old AM radio, air is a nonlinear medium, and it performs a demodulation of the ultrasound to produce an audio frequency that can be heard. She spends a while going into modulation schemes, before revealing that she drove her speaker with a 40 kHz PWM via an H bridge. The speaker itself is an array of in-phase ultrasonic transducers, and she demonstrates the result on her audience.

This project is surprisingly simple, should you wish to have a go yourself. There’s a video below the break, and she’s put all the files in a GitHub repository. Meanwhile this isn’t the first time we’ve seen a project like this.

Continue reading “Build A Parametric Speaker Of Your Own”

Smartwatches Could Flatten The Curve Of The Next Pandemic

While we’d like to think that pandemics and lockdowns are behind us, the reality is that a warming climate and the fast-paced travel of modern life are a perfect storm for nasty viruses. One thing that could help us curb the spread of the next pandemic may already be on your wrist.

Researchers at Aalto University, Stanford University, and Texas A&M have found that the illness detection features common to modern smartwatches are advanced enough to help people make the call to stay home or mask up and avoid getting others sick. They note we’re already at 88% accuracy for early detection of COVID-19 and 90% for the flu. Combining data from a number of other studies on smartwatch accuracy, epidemiology, behavior, and biology, the researchers were able to model the possible outcomes of this early detection on the spread of future diseases.

“Even just a 66-75 percent reduction in social contacts soon after detection by smartwatches — keeping in mind that that’s on a par with what you’d normally do if you had cold symptoms — can lead to a 40-65 percent decrease in disease transmission compared to someone isolating from the onset of symptoms,” says Märt Vesinurm.

We’ve got you covered if you’re looking for a smartwatch that looks a bit like a hospital wristband and we’ve also covered one that’s alive. That way, you’ll have a slimy friend when you’re avoiding other humans this time around. And when it’s time to develop a vaccine for whatever new bug is after us, how do MRNA vaccines work anyway?

Dismanteled Hallicrafters radio on workbench

Shortwave Resurrection: A Sticky Switch Fix On A Hallicrafters

Shortwave radio has a charm all its own: part history, part mystery, and a whole lot of tech nostalgia. The Hallicrafters S-53A is a prime example of mid-century engineering, but when you get your hands on one, chances are it won’t be in mint condition. Which was exactly the case for this restoration project by [Ken’s Lab], where the biggest challenge wasn’t fried capacitors or burned-out tubes, but a stubborn band selector switch that refused to budge.

What made it come to this point? The answer is: time, oxidation, and old-school metal tolerances. Instead of forcing it (and risking a very bad day), [Ken]’s repair involved careful disassembly, a strategic application of lubricant, and a bit of patience. As the switch started to free up, another pleasant surprise emerged: all the tubes were original Hallicrafters stock. A rare find, and a solid reason to get this radio working without unnecessary modifications. Because some day, owning a shortwave radio could be a good decision.

Once powered up, the receiver sprang to life, picking up shortwave stations loud and clear. Hallicrafters’ legendary durability proved itself once before, in this fix that we covered last year. It’s a reminder that sometimes, the best repairs aren’t about drastic changes, but small, well-placed fixes.

What golden oldie did you manage to fix up?

Continue reading “Shortwave Resurrection: A Sticky Switch Fix On A Hallicrafters”

Interposer Helps GPS Receiver Overcome Its Age

We return to [Tom Verbeure] hacking on Symmetricom GPS receivers. This time, the problem’s more complicated, but the solution remains the same – hardware hacking. If you recall, the previous frontier was active antenna voltage compatibility – now, it’s rollover. See, the GPS receiver chip has its internal rollover date set to 18th of September 2022. We’ve passed this date a while back, but the receiver’s firmware isn’t new enough to know how to handle this. What to do? Build an interposer, of course.

You can bring the module up to date by sending some extra init commands to the GPS chipset during bootup, and, firmware hacking just wasn’t the route. An RP2040 board, a custom PCB, a few semi-bespoke connectors, and a few zero-ohm resistors was all it took to make this work. From there, a MITM firmware wakes up, sends the extra commands during power-on, and passes all the other traffic right through – the system suspects nothing.

Everything is open-source, as we could expect. The problem’s been solved, and, as a bonus, this implant gives a workaround path for any future bugs we might encounter as far as GPS chipset-to-receiver comms are concerned. Now, the revived S200 serves [Tom] in his hacking journeys, and we’re reminded that interposers remain a viable way to work around firmware bugs. Also, if the firmware (or the CPU) is way too old to work with, an interposer is a great first step to removing it out of the equation completely.

Inexpensive Powder Coating

[Pete] had a friend who would powder coat metal parts for him, but when he needed 16 metal parts coated, he decided he needed to develop a way to do it himself. Some research turned up the fluid bed method and he decided to go that route. He 3D printed a holder and you can see how it all turned out in the video below.

A coffee filter holds the powder in place. The powder is “fluidized” by airflow, which, in this case, comes from an aquarium pump. The first few designs didn’t work out well. Eventually, though, he had a successful fluid bed. You preheat the part so the powder will stick and then, as usual, bake the part in an oven to cure the powder. You can expect to spend some time getting everything just right. [Pete] had to divert airflow and adjust the flow rate to get everything to work right.

With conventional powder coating, you usually charge the piece you want to coat, but that’s not necessary here. You could try a few other things as suggested in the video comments: some suggested ditching the coffee filter, while others think agitating the powder would make a difference. Let us know what you find out.

This seems neater than the powder coating guns we’ve seen. Of course, these wheels had a great shape for powder coating, but sometimes it is more challenging.

Continue reading “Inexpensive Powder Coating”