Skip The Radio With This Software-Defined Ultrasound Data Link

We know what you’re thinking: with so many wireless modules available for just pennies, trying to create a physical data link using ultrasonic transducers like [Damian Bonicatto] did for a short-range, low-bitrate remote monitoring setup seems like a waste of time. And granted, there are a ton of simple RF protocols you can just throw at a job like this. Something like this could be done and dusted for a couple of bucks, right?

Luckily, [Damian] wanted something a little different for his wireless link to a small off-grid solar array, which is why he started playing with ultrasound in an SDR framework. The design for his “Software-Defined Ultrasonics” system, detailed in Part 1, has a pair of links, each with two ultrasonic transducers, one for receiving and one for transmitting. Both connect to audio amplifiers with bandpass filters; the received signal is digitized by the ADC built into an Arduino Nano, while the transmitted signal is converted to analog by an outboard DAC.

The transducers are affixed to 3D printed parabolic reflectors, which are aimed at each other over a path length of about 150′ (46 m). Part 2 of the series details the firmware needed to make all this work. A lot of the firmware design is dictated by the constraints introduced by using Arduinos and the 40-kHz ultrasonic carrier, meaning that the link can only do about 250 baud. That may sound slow, but it’s more than enough for [Damian]’s application.

Perhaps most importantly, this is one of those times where going slower helps you to go faster; pretty much everything about the firmware on this system applies to SDRs, so if you can grok one, the other should be a breeze. But if you still need a little help minding your Is and Qs, check out [Jenny]’s SDR primer.

It’s The Simple Things

I love minimal hacks. Limitations are sometimes the spark for our greatest creativity, and seeing someone do something truly marvelous with the simplest of technological ingredients never fails to put a smile on my face.

This week, it was the super-simple 1D Fireworks project by [Daniel Westhof]. Nothing more than an ESP8266 and a long RGB LED strip went into this effect on the hardware side, and indeed the code isn’t all that tricky either. But what it does is a very nice simulation of the physics that define the movement of a flare rocket and then all of the stars that explode out of it. And that makes it look so good.

Hackaday’s [Kristina Panos] is apparently also a fan of the single dimension, because she picked out some of my personal favorite uses of an LED strip, including Twang, to which we’ll admit we’re addicted, or any of the PONG versions.

But I’ve seen other games, including a button-mashing racer and various roller-coaster simulations. All with the same, essentially, two-part BOM. (OK, if you don’t count the buttons/accelerometer, or power supply.) Or this demo of sorting routines, or the Velocicoaster. And I think there’s more out there.

How much creativity can you pack into an LED strip? This sounds like we need to make a new contest…

OpenWRT To Mark 20 Years With Reference Hardware

The OpenWRT project is now two decades old. The project has come a long way since Linksys was forced to release the GNU-licensed code for the original WRT54G router from which the project takes its name. They’ve marked the occasion in an interesting manner: by proposing that the plethora of devices supported by the OS be joined by a fully upstream-supported reference hardware platform.

Spec-wise it’s what you would expect for a hackable router platform in 2024. A MediaTek chipset can be found at its centre, but the hardware is not in this case the important bit. Here will be a platform that won’t have to rely on proprietary manufacturer BLOBs, and which will thus likely continue to have up-to-date kernel support long into the future. So many enticing SBCs fall in this regard, and many retain ossified kernel versions after their manufacturers tire of them as a result.

It appears that the future of this project will be subject to an OpenWRT community vote, and we sincerely hope that it will come to fruition. Meanwhile, we couldn’t resist a peek at the status of the router that started it all, by our reckoning the original WRT54G was last supported by the OS over a decade ago.

Wiring An SD Card To A Handspring PDA’s 68K Bus With Only Three SOT23s

In 1998 the founders of Palm had a bit of a falling out with the wildly successful PDA company’s new owners. They set up a new company called Handspring, which enabled them to make PDAs again in the way they preferred, This resulted in the Handspring Visor line of PDAs, which featured a big cartridge slot called the Springboard Expansion slot. Much like a Gameboy, you could put in a range of modules, ranging from games to cameras to memory expansion and more. Since these modules connect directly to the internal Motorola 68k-based microprocessor, you could make a module either to comply with this standard or if you’re like [Dmitry], you’d figure out a way to get an SPI device like an SD card to communicate and expand storage.

Editor note: Dmitry’s design isn’t the first SD/MMC interface for the Visor. Portable Innovation Technology’s SD MemPlug Module supported SD/MMC way back in 2002. However – MemPlug was a commercial product, while Dmitry’s work is open source.

Continue reading “Wiring An SD Card To A Handspring PDA’s 68K Bus With Only Three SOT23s”

Wiring Harness? That’s A Wrap!

[Mr Innovative] likes to keep his wire harnesses tidy, but it is a pain to neatly wrap cables. So, he automated the process using a combination of milled acrylic and 3D printing. We hope the design files will be up on his website soon, although the mechanism is similar to another wrapping machine he made a few years ago. However, it can still be a source of inspiration if you want to do a unique take on it.

To use the machine, you feed the wires through the center hole and mount tape on the spool. A motor spins the spool and you only need to slowly advance the tool to get a nice close wrap. Naturally, you can wrap tape around wires by hand, so this is a bit of a luxury item. However, we could see modifying it to move the cable through at a constant rate with another motor, which might do a better job than you can do by hand.

We couldn’t help but wonder if you could start with a ping pong paddle instead of cutting the frame out of acrylic.

Continue reading “Wiring Harness? That’s A Wrap!”

TMS 1000 Microcontroller - By Antonio Martí Campoy - Own work, CC BY-SA 4.0

The Early History Of The Microcontroller: It Came From Texas

Ti’s presentation of the rapid integration of calculator chips.
Ti’s presentation of the rapid integration of calculator chips.

Although for most generations alive today the era of microcontrollers (MCU) feels like it starts somewhere with the Intel 8051 and AVR MCUs, the history of these self-contained computing marvels that are now found just about anywhere begins long before those were even conceptualized. In a recent article titled Tiny Computers From Texas, [Babbage] goes through this early history of what would ultimately become such an integral part of daily life.

An MCU is defined as a small, self-contained computer, which requires few to no external components to function. This contrasted with the more traditional MPUs, or microprocessor units, where a computer was assembled out of one or more MPUs, I/O chips, memory SRAM and so on. It’s perhaps little surprise that the drive towards MCUs was the result of primarily the calculator market, where competing firms were trying to upstage each other with higher levels of integration into as few chips as possible, while driving down costs and power usage.

Ultimately, the Texas Instruments TMS 1000 was the first true MCU that got produced in large volumes after its release in 1974. Moving beyond calculators, the TMS 1000 found its way into toys, including the Speak & Spell – which uses another Ti chip (TMS 5100) for the voice synthesis – so that today any toy can be interactive in exciting and often noisy ways.

Back in 2020 we took our own affectionate look at this chip.

All I Want For Mr. Christmas Is Some New Music

It’s true — you really can find anything (except maybe LEGO) in thrift stores. When [thecowgoesmoo] picked up a Mr. Christmas Symphonium music box one day, they knew they wanted to make it play more than just the standard Christmas and classical fare that ships with the thing.

So they did what any self-respecting hacker would do, and they wrote a MATLAB script that generates new disk silhouette images that they then cut from cardboard with a laser cutter. They also used various other materials like a disposable cutting mat. Really, whatever is lying around that’s stiff enough and able to be cut should work. You know you want to hear Van Halen’s “Jump” coming from a tinkling music box, don’t you? Be sure to check out the video demonstration after the break.

If you don’t want to wait around until a Mr. Christmas lands in your lap, why not make your own hand-cranked music box and accompanying scores?

Continue reading “All I Want For Mr. Christmas Is Some New Music”