Social Engineering Chatbots With Sad-Sob Stories, For Fun And Profit

By this point, we probably all know that most AI chatbots will decline a request to do something even marginally nefarious. But it turns out that you just might be able to get a chatbot to solve a CAPTCHA puzzle (Nitter), if you make up a good enough “dead grandma” story.

Right up front, we’re going to warn that fabricating a story about a dead or dying relative is a really bad idea; call us superstitious, but karma has a way of balancing things out in ways you might not like. But that didn’t stop X user [Denis Shiryaev] from trying to trick Microsoft’s Bing Chat. As a control, [Denis] first uploaded the image of a CAPTCHA to the chatbot with a simple prompt: “What is the text in this image?” In most cases, a chatbot will gladly pull text from an image, or at least attempt to do so, but Bing Chat has a filter that recognizes obfuscating lines and squiggles of a CAPTCHA, and wisely refuses to comply with the prompt.

On the second try, [Denis] did a quick-and-dirty Photoshop of the CAPTCHA image onto a stock photo of a locket, and changed the prompt to a cock-and-bull story about how his recently deceased grandmother left behind this locket with a bit of their “special love code” inside, and would you be so kind as to translate it, pretty please? Surprisingly, the story worked; Bing Chat not only solved the puzzle, but also gave [Denis] some kind words and a virtual hug.

Now, a couple of things stand out about this. First, we’d like to see this replicated — maybe other chatbots won’t fall for something like this, and it may be the case that Bing Chat has since been patched against this exploit. If [Denis]’ experience stands up, we’d like to see how far this goes; perhaps this is even a new, more practical definition of the Turing Test — a machine whose gullibility is indistinguishable from a human’s.

Rock Salt May Lead The Way To Better Batteries

The regular refrain here when it comes to announcements of new battery chemistries hailed as potentially miraculous is that if we had a pound, dollar, or Euro for each one we’ve heard, by now we’d be millionaires. But still they keep coming, and it’s inevitable that there will one or two that break through the practicality barrier and really do deliver on their promise. Which brings us tot he story which has come our way today, the suggestion that something as simple as rock salt could triple the energy density of a lithium-ion vehicle battery.

The research led from Lawrence Berkeley National Laboratory started around the use of cobalt in the battery cathode, an expensive and finite resource with the added concern of being in large part a conflict mineral from the Democratic Republic of Congo. Cobalt is used in  the cathodes because its oxide crystals form a stable layered structure into which the lithium ions can percolate. Alternative layered-structure metal oxides perform less well in retaining the lithium ions, making them unsuccessful substitutes. It seems that the three-dimensional structure of a rock salt crystal performs up to three times better than any layered oxide, which is where the excitement comes from.

Of course, if it were that simple we’d all be using three-times-more-powerful, half-price 18650s right now, which of course we aren’t. The challenge comes in making a rock salt cathode which both holds the lithium ions, and keeps that property reliably over the thousands of charge cycles needed for a real-world application. This one may yet be anther dollar on that metaphorical pile, but it just might give us the batteries we’ve been looking for.

Then again, when you’re looking at exciting battery chemistry, why limit yourself to lithium?

Lessons Learned While Building A DIY Pen Plotter

There was a time when plotters were the pinnacle of computer graphics output. While they aren’t as common as they used to be, there are some advantages to having a plotter. [Symon] wanted a plotter and decided to make one from scratch. Truthfully, he wants to build a CNC machine, so the plotter is just a stepping stone. In fact, some of it may be a little much for just a plotter. Other design choices have worked for the plotter, but don’t look like they will work well for the eventual CNC design.

As an example, the plotter uses 2020 extrusions and lead screws. An Arduino with a CNC shield provides the brains. GRBL, of course, runs on the Arduino, so the whole machine runs fine with normal G-code. This post will be especially interesting if you want to build a plotter or something similar. We especially like that it covers the design rationale for each choice made It is great to learn from others successes and, of course, their mistakes.

If you really want just a plotter, you don’t have to spend much. You can even go super minimal if you want.

Bleep Remover Censors Those **** Bleeps

One of the more interesting cultural phenomena is the ‘bleep’ that replaces certain words in broadcasts, something primarily observed in the US. Although ostensibly applied to prevent susceptible minds from being exposed to the unspeakable horrors of naughty words, the applied 1 kHz censoring tone is decidedly loud and obnoxious enough that its entertainment level falls somewhere between ‘truck backing up’ and ‘loud claxon in busy traffic’. There is thus a definite argument to be made to censor the censoring beep to preserve one’s sanity, which is the goal of [Oona Räisänen]’s Bleep-be-gone project on GitHub.

Using a Perl-based wrapper, the versatile ffmpeg framework is used to filter a provided video that was afflicted with bleepitus, before outputting a pristine version where the infernal noise is replaced with blissful silence. This use of silence for censoring naughty words is incidentally becoming more commonplace over an ear-piercing beep, but a tool like Bleep-be-gone can be used to hasten the demise of its terror. Considering that the point of the 1 kHz back-up alarm beep is to draw a person’s attention to a piece of heavy equipment moving about, there is clearly no good reason why the replacement of a naughty word should warrant a similar drawing of attention.

Using 5V Programmable Logic Here In The 2020s

Do you speak GAL? [Peterzieba] does, and has pulled together a collection of documents and tools so that you can too. There’s a dividing line in electronic engineering education, between those who were taught about FPGAs, and those who weren’t. Blurring that line slightly is gate array logic (GAL). These devices were a preceursor to the FPGA, with a much simpler structure, and usually in those days UV-erasable in the same manner as an EPROM. And oddly enough, they, or at least their successor compatible parts, are still available, and as handy DIP devices that talk to 5 volt logic.

The guide goes into detail about the parts, the terminology surrounding them, and the CUPL language which raises a few memories for us. There are several possible workflows, including for those not faint of heart, the possibility of writing a fusemap by hand. We’re impressed by that one.

If these devices interest you, our colleague Bil Herd wrote a two-part guide (part one, and part two) which should answer your questions.

Thanks [Bjonnh] for the tip!

Featured image: “Commodore Amiga 1000 – sub board – Texas Instruments PAL16L8ACN-0126” by Raimond Spekking

One-String, One-Trick Pony Plays “the Lick”

Wouldn’t you love to be able to play a song on a stringed instrument even though you don’t have an iota of musical talent? That’s the idea behind Strumli, a single-string instrument built by [Factorem] that plays “the lick”. You know, the lick. Chances are, you’ve heard it somewhere before.

Essentially, it’s a pill-shaped bowl with a soundboard. A high-E guitar string is wound around bearings and tuned with a guitar tuner. The lengths of string between the bearings correspond to each note in the lick. Strum it in the right direction, and Bob’s your uncle.

So how the heck did [Factorem] come up with the proper string lengths needed to play the song? After a bit of fancy math involving the equation that represents the relationship between the measurable frequency of a vibrating string under tension and the tension itself, [Factorem] had the overall length of the string. Then it was a matter of finding the frequencies needed to play the lick, along with their corresponding lengths.

Since the string exerts about 80 pounds of tension across the 3D-printed soundboard, some serious internal bracing is required, which [Factorem] figured out in CAD program. All the files are available if you want to build your own. Be sure to check out the build/demo after the break.

Would you rather just build a little harp? Here’s the inspiration for Strumli — a single-string number with a full octave.

Continue reading “One-String, One-Trick Pony Plays “the Lick””

2023 Halloween Hackfest: Flickering Pumpkin Pin Is Solidly Built

Now first of all, [Steph] grants that you can already take your pick of several LED pumpkin badges out there on IO. That’s not the point. The point is that this flickering pumpkin pin is nicely-built as well as being open source.

Even though it’s fully featured — it flickers, it’s wearable, and it’s lightweight — the build couldn’t be more simple. It’s fancy through-hole LEDs and a coin cell holder, plus a tack pin to stick it through your shirt. But the final result is quite elegant thanks to clever use of PCB layering.

The first version was to get all the layers right to let the light through and embellish the jack-o-lantern’s lines with manufacturer-applied silver solder, but as [Steph] points out, it looked ‘like something a disturbed child might carve into their desk in detention’. So [Steph] enlisted [Mx. Jack Nelson], who improved the artwork.

Pretty much every component does double duty here, including the tack pin — it serves as a switch because it can hold the battery in place. The battery’s edges reflect the glowing light quite nicely around the edge of the pin. And the LEDs beneath the battery prevent it from slipping out. You can see how it goes together in the video after the break.

Continue reading “2023 Halloween Hackfest: Flickering Pumpkin Pin Is Solidly Built”