Stay Smarter Than Your Smart Speaker

Smart speakers have always posed a risk to privacy and security — that’s just the price we pay for getting instant answers to life’s urgent and not-so-urgent questions the moment they arise. But it seems that many owners of the 76 million or so smart speakers on the active install list have yet to wake up to the reality that this particular trick of technology requires a microphone that’s always listening. Always. Listening.

With so much of the world’s workforce now working from home due to the global SARS-CoV-2 pandemic, smart speakers have suddenly become a big risk for business, too — especially those where confidential conversations are as common and crucial as coffee.

Imagine the legions of lawyers out there, suddenly thrust from behind their solid-wood doors and forced to set up ramshackle sub rosa sanctuaries in their homes to discuss private matters with their equally out-of-sorts clients. How many of them don’t realize that their smart speaker bristles with invisible thorns, and is even vulnerable to threats outside the house? Given the recent study showing that smart speakers can and do activate accidentally up to 19 times per day, the prevalence of the consumer-constructed surveillance state looms like a huge crisis of confidentiality.

So what are the best practices of confidential work in earshot of these audio-triggered gadgets?

Continue reading “Stay Smarter Than Your Smart Speaker”

Making Your Own Maple Syrup Just Got A Little Easier

[ctstarkdesigns] had fond memories of collecting maple syrup as a child. At the same time, he also remembered the work involved: from lugging buckets around on an unstable snow mobile to accidentally burning the mixture and making all the effort for naught. So he set out to make things a little easier this time around by building his own evaporator.

The build starts as many do, with a surplus 44-gallon drum. With an off-the-shelf kit, and some cutting and welding, it’s readily repurposed into a stove capable of burning wood in a roaring fire. From there, it’s a simple matter of making a few further incisions to install warming trays, used to hold the takings from the maple trees. There, the mixture can be boiled down into the tasty, delicious substance that goes so perfectly on pancakes.

The build has the dual benefits of both easing the boiling process and keeping the user warm while doing so. Already, the rig has proven itself as an adept heater, and we’re sure it will only prove more popular once it’s producing sweet maple syrup en mass. If that’s not enough, consider building an entirely automated system in your back yard!

Beer Keg Becomes High-Performance Pizza Oven

Pizza varies all around the world, with several cities having put their own mark on the Italian dish. To make an authentic pie in the Neapolitan style requires extremely high temperatures in order to cook the pizza through in just a couple of minutes. Armed with a beer keg and some ingenuity, [AndrewW1977] got down to work, building a rig that could get the job done.

The build starts by cutting the keg in half. A series of zigzag steel pieces are welded inside, in order to give the refractory cement more surface area to stick to. With the cement poured and set, a handle was welded to the keg for ease of use, as well as a thermometer to monitor internal temperatures.

Initial attempts to cook using the rig used a wood-fired rocket stove design. This had the drawback of taking up to 45 minutes to reach the appropriate temperature, so the build then switched to using God’s Gas, clean burning propane, as a fuel source. With a jet-style burner installed in the base, the oven was ready to start turning out pizzas.

The idea of cooking a hot, fresh pizza in just a couple of minutes has us salivating at the possibilities. We’ve seen other high-speed pizza ovens, too. Video after the break.

Continue reading “Beer Keg Becomes High-Performance Pizza Oven”

IREnE Goes Around

Timelapse rigs are awesome because you can spice up your videos with more interesting panning and tilting timelapse shots. So, why not build yourself one? That’s what [td0g] decided to do, and the result is IREnE, a rather nice homemade 3DOF rig that fits onto a standard tripod. 3DOF means that it has three degrees of freedom: the camera can be rotated on the tripod, moved linearly on an extending arm away from the tripod head and rotated around its own axis. In other words: it can pan past an object while rotating the camera to keep the object centered in the frame.

IREnE stands for Inverted Radial Extension Eggtimer, a play on the dual radial nature of the device and how photographers use egg timers for this sort of thing. It’s also a sneaky tribute to a foe of Sherlock Holmes. The rig is driven by three NEMA 17 motors and an ATMega328p, all powered by a Dewalt powertool battery and his own DeWatt power adapter. the rig also has a secondary function with minor modifications as a pancake printer.

Breakfast aside, there are a few caveats to this project. While a tripod is fine for stabilizing a camera on the top of it, offsetting the weight like this makes the tripod unstable. [td0g] did add a few welded stabilizer bars that brace it to more stable, but the whole thing should be used with some caution. The camera sits on a 1-inch square aluminium extruder that [td0g] claims is robust enough to hold his Canon D7, but I am not sure I would trust it with my expensive equipment.

This is the fifth high-quality build we have seen from [td0g]: we previously covered the excellent high-speed LED flash, great telescope mount, high-speed chronograph, and wood-burning ATX power supply hack.

Continue reading “IREnE Goes Around”

Pizza Oven Build Exercises Forgotten Gym Ball

See, this is what happens when pizza lovers follow their dreams. It probably started innocently enough for [phammy57]—he got a pizza stone, then maybe one of those big rocking pizza cutters. Maybe he even learned how to toss the dough high in the air. But every time [phammy57] slid one of those homemade pies into the electric oven, the nagging feeling grew a little stronger. Eventually, he gave in to making pizza the way it’s supposed to be made, and built a wood-fired oven.

The most intriguing thing about this build is also the most important: this pizza preparer pivots on a gym ball, which served as the base for forming the oven. To do this, [phammy57] pushed the ball halfway through a hole in a big piece of plywood, effectively creating the world’s largest Pogo Bal (remember those?). Then he applied plastic wrap to the ball as a mold release, and laid down a thick mixture of vermiculite, cement, and water.

[phammy57] built the base from lightweight blocks, sculpting a nice arch for the top of the wood storage area. Once the dome was fastened to the base with the opening cut and outlined with brick, he cut a vent hole and built the chimney. Finally, it was time to add insulating blanket material, chicken wire, more vermiculite, and coat of plaster to finish. Take a brief look inside after the break.

It’s a long process of building, curing, and burning in, but the end result looks fantastic. We bet it pizzas like a champ, too. Probably gives this 45-second pizza oven a run for its money.

[Ed Note: If you’re still having trouble parsing the title, try it out with “build” as a noun and “exercises” as a verb.]

Continue reading “Pizza Oven Build Exercises Forgotten Gym Ball”

Particle Mesh Powers The Internet Of Fans

With the winter months not far off, [Ben Brooks] was looking for a way to help circulate the heat from his wood-burning fireplace throughout his home. Rather than go with a commercial solution, he decided to come up with his own automated air circulation system powered by the mesh networking capabilities of one of his favorite pieces of tech, the Particle Photon.

Particle Xeon remote sensor

The idea here is pretty simple: use a remote temperature sensor to tell a fan located behind the fireplace when it’s time to kick on and start sharing some of that warmth with the rest of the house. But as usual, it ended up being a bit trickier than anticipated. For one, when [Ben] took a close look at the Vornado 660 fan he planned on using, he realized that its speed controller was “smart” enough that simply putting a relay on the AC line wouldn’t allow him to turn it on and off.

So he had to do some reverse engineering to figure out how the Sonix SN8P2501B microcontroller on the board was controlling the fan, and then wire the Photon directly to the pins on the chip that corresponded with the various physical controls. This allows the Photon to not only “push” the buttons to trigger the different speeds, but also read the controls to see if a human is trying to override the current setting.

For the remote side [Ben] is using a Particle Xenon, which is specifically designed for Internet of Things endpoints and sensor applications. Combined with a TMP36 temperature sensor and 3.7 V 500 mAh battery, this allowed him to easily put together a wireless remote thermometer that will publish the current temperature to the Photon’s mesh network at regular intervals.

This isn’t the first time we’ve seen the Particle Photon used to augment an unassuming piece of hardware. We’ve previously seen one get grafted into a coffee maker, and if you can believe it, somebody even stuck one inside an umbrella to create a mobile weather station.

Square Laser Harp Is Hip

You know, we hadn’t realized how tired we were of vertical laser harps until we saw [Jonathan Bumstead]’s entry into the 2019 Hackaday Prize. It’s all well and good to imitate the design of the inspiring instrument. But the neat thing about synths is that they aren’t confined to the physics of the acoustic instruments they mimic. This project elevates the laser harp into functional sculpture territory. It’s a piece of art that produces art.

And this art harp is entirely self-contained, with built-in MIDI, amplifier, and speakers. The brains of this beauty are an Arduino Mega and an Adafruit music maker shield, which give it twenty different instrument voices. Each of the six layers has two lasers, two mirrors, and two photo-resistors mounted in the corners of the plywood skeleton. The lasers and photo-resistors are mounted back to back in opposite corners, with mirrors in the other two corners to complete the paths. [Jonathan] cleverly diffused the laser light with milky slivers of film canister plastic.

This isn’t [Jonathan]’s first optical rodeo. Previous experience taught him the importance of being able to readjust the lasers on the fly, because every time he moved it, the laser modules would go out of alignment. This time, he built kinematic mounts that let him reposition the lasers using four screws that each push a corner.

There are a lot of nice touches here, especially the instrument selector wheel. [Jonathan] explains it and the rest of the harp in a fantastic demo/build video that’s just burning a hole in the space after the break.

Continue reading “Square Laser Harp Is Hip”