Supercon 2022: [Jorvon Moss] Gives His Robots A Soul

How do you approach your robot designs? Maybe, you do it from a ‘oh, I have these cool parts’ position, or from a ‘I want to make a platform on wheels for my experiments’ perspective. In that case, consider that there’s a different side to robot building – one where you account for your robot’s influence on what other people around feel about them, and can get your creations the attention they deserve. [Jorvon ‘Odd-Jayy’ Moss]’s robots are catchy in a way that many robot designs aren’t, and they routinely go viral online. What are his secrets to success? A combination of an art background, a Bachelor of Fine Arts in illustration, and a trove of self-taught electronics skills helped him develop a standout approach to robot building.

Now, [Jorvon] has quite a few successful robot projects under his belt, and at Supercon 2022, he talks about how our robots’ looks and behaviour shapes their perception. How do your own robots look to others, and what feelings do they evoke? With [Jorvon], you will go through fundamentals of what makes a robot look lively, remarkable, catchy or creepy, and it’s his unique backgrounds that let him give you a few guidelines on what you should and should not do when building a certain kind of robot.

You’ll do good watching this video – it’s short and sweet, and shows you a different side to building robots of your dreams; plus, the robot riding around on the stage definitely makes this presentation one of a kind. No matter your robot’s technical complexity, it’s significant that it can make people go ‘wow’ when they see it. Not all robots are there to single-mindedly perform a simple task, after all – some are meant to travel around the world.

Continue reading “Supercon 2022: [Jorvon Moss] Gives His Robots A Soul”

DIY 3D Printed Rain Gauge Connects To Home Assistant

Measuring local rainfall has real practical uses, especially in agriculture, but most of us will have to admit that it’s at least partly about drawing cool graphs on a screen. Whatever your motivation, you can build this open source electronic rain gauge designed by [Sebastian] of Smart Solutions for Home, and integrate it with Home Assistant.

This 3D printed rain gauge is of the ubiquitous tipping bucket type and uses a magnet and hall effect sensor to detect every time the bucket tips out. The sensor is soldered to a custom PCB with ESP32 configured using ESP Home. By keeping it in deep sleep most of the time and only waking up when the tip of the bucket, [Sebastian] estimates it can run about a year on four AA batteries, depending on rainfall. The hinge mechanism is adjustable to ensure that both buckets will tip with the same volume of water.

FDM 3D printed enclosures are not known for being waterproof, so [Sebastian] coated the PCB with varnish to protect it from moisture. This worked well enough that he could leave it running in a bowl of water for a few hours without any ill effects. The end result looks good and should be able to handle the outdoors for a long time.

Building a weather station is a popular DIY project. Some of the interesting varieties we’ve seen are powered by supercapacitors, show readings on antique analog dials and convert parking distance sensor kit into a wind gauge.

Continue reading “DIY 3D Printed Rain Gauge Connects To Home Assistant”

Methane-Tracking Satellites Hunt For Nasty Greenhouse Gas Emissions

Much of the reporting around climate change focuses on carbon dioxide. It’s public enemy number one when it comes to gases that warm the atmosphere, as a primary byproduct of fossil fuel combustion.

It’s not the only greenhouse gas out there, though. Methane itself is a particularly potent pollutant, and one that is being emitted in altogether excessive amounts. Satellites are now on the hunt for methane emissions in an attempt to save the world from this odorless, colorless gas.

Continue reading “Methane-Tracking Satellites Hunt For Nasty Greenhouse Gas Emissions”

Will Electric Tractors Farm Your Food?

There are two professions used to driving single-seaters with hundreds of horsepower, one of which is very exclusive and the other of which can be found anywhere the ground is fertile enough to support agriculture. Formula One drivers operate fragile machines pushed to the edges of their performance envelope, while the tractor at the hands of a farmer is designed to reliably perform huge tasks on dodgy ground in all weathers. Today’s tractor is invariably a large machine powered by a diesel engine, and it’s the equal of all tasks on a modern farm. Against that backdrop then it’s interesting to read the Smithsonian magazine’s look at the emerging world of electric tractors. Will they replace diesel as the source of traction in the fields?

Farm-ng’s Amiga

The two firms they focus on first are Monarch Tractor, and Solectrac. Both manufacturers offer small machines of the type we’d be inclined to describe as an orchard tractor, and Monarch are offering an autonomous option as part of their package. They also feature Farm-ng, whose machine called amusingly the Amiga, is a much smaller affair which we are guessing would be super-useful on a very intensive operation such as market gardening. We’re especially pleased to see that the emerging small electric tractor industry is embracing right to repair, something the traditional manufacturers are famous for ignoring.

It’s obvious that none of these machines are going to revolutionize the world of large high-power tractors any time soon, as they are too small for the job and can’t offer the 24/7 operation required at busy times on a farm. But it’s obvious they would be very useful on a small farm, and in particular for those tractor applications where the machine is a platform which goes from place to place to aid static work, they could be better than their diesel equivalents.

It’s odd that over the years we’ve not covered any electric tractors before. Perhaps that is, until you search instead for agricultural robots.

South Korea Successfully Sends Satellites To Orbit

South Korea’s KARI ( Korea Aerospace Research Institute ) successfully put a commercial satellite into orbit Thursday, achieving another milestone in their domestic space program. The Nuri rocket (aka KLSV-2) left the Naro Space Center launch pad on the southern coast of the peninsula at 18:24 KST, after a communications glitch in the pad’s helium tank facility caused a one-day slip. The primary payload was the 180 kg refrigerator-sized Earth observation satellite NEXTSat-2. It uses synthetic aperture radar (SAR) and also has instruments to observe neutrons in near-Earth orbit due to the impact of solar activity on cosmic radiation. In addition, seven CubeSats were successfully deployed:

  • Justek JLC-101-V1.2, to verify satellite orbital control system
  • Lumir, measuring cosmic radiation and testing rad-hardened microprocessor design
  • Cairo Space, weather observation and space debris technology demonstration
  • KASI-SAT (Korea Astronomy and Space Science Institute) SNIPE, actually four nano-sats which will achieve a 500 km – 600 km polar orbit and fly in formation to measure plasma variations.

It seems that SNIPE-C, Justek, and Lumir are having communication troubles and may be lost. Ground controllers are still searching. This launch comes almost one year after the previous launch of a dummy satellite in June, which we wrote about last year.

Continue reading “South Korea Successfully Sends Satellites To Orbit”

Mat Boards Are Spendy, So DIY CNC Tool To The Rescue

Mats are flat pieces of paper-based material that fill the space between a frame and the art within. They perform a number of aesthetic and practical functions, and they can also be expensive to purchase. Making them by hand is an option, but it’s an exacting process. [wooddragon48] felt that a CNC solution would serve this need nicely, and began designing a DIY CNC tool to do exactly that.

One of the tricky parts about cutting mat boards is that cuts are at an angle, and there is really no tolerance for overcuts or any kind of visual blemish. CNC control would seem to offer a great solution to both the need for precisely straight cuts, as well as fine control over where cuts begin and end in a way that opens the door to complex designs that would be impractical to do by hand.

[wooddragon48]’s design has an angled cutter designed to plunge perfectly on demand, surrounded by a ring — similar to that on a router — which ensures the cutting tool is always consistently positioned with the material. It’s still in the design phase, but this is a type of tool that doesn’t yet exist so far as we can tell. The ability to CNC cut mat board, especially in complex designs, would be a huge timesaver.

Art and DIY CNC have a long history of happy intersection, as we have seen with a CNC router repurposed for string art, a CNC painting robot, and even an interactive abstract sculpture generator.

Your Engineering Pad In Browser

It was always easy to spot engineering students in college. They had slide rules on their belts (later, calculators) and wrote everything on engineering pads. These were usually a light brown or green and had a light grid on one side, ready to let you sketch a diagram or a math function. These days, you tend to sketch math functions on the computer and there are plenty of people willing to take your money for the software. But if you fire up your browser, head over to EngineeringPaper.xyz and you might save a little cash.

Although it looks a lot like a Jupyter notebook, the math cells in EngineeringPaper keeps track of units for you and allows you to query results easily. Want to read more? Luckily, there is an EngineeringPaper worksheet that explains how to use it. If you prefer your explanations in video form, check out their channel, including the video that appears below.

Continue reading “Your Engineering Pad In Browser”