Supercon 2022: Nick Poole Makes A Jolly Wrencher Tube

[Nick Poole] shared his circuitous journey into the obscure world of homemade vacuum tubes on the Supercon 2022 stage. It began innocently enough when he saw [Usagi Electric]’s single bit computer vacuum tube computer, which uses dozens of vacuum tubes. He got to wondering, could you make vacuum-tube-like devices containing multiple elements? There are some examples, like the 256-bit memory Selectron tube from the 1950’s, but nothing general purpose like a 555 timer or quad NAND gate packages. Unencumbered by a deep understanding of how vacuum tubes work, [Nick] proceeds to fill this void by imagining Integrated Thermionic, a fictitious company that exists in an alternate history where transistors were not invented and the vacuum tube reigns supreme. He also showcases a variety of innovative products that Integrated Thermionics manufactured over the decades, including surface mount tubes.

Continue reading “Supercon 2022: Nick Poole Makes A Jolly Wrencher Tube”

Building Circuits Flexibly

You think of breadboards as being a flexible way to build things — one can easily add components and wires and also rip them up. But MIT researchers want to introduce an actual flexible breadboard called FlexBoard. The system is like a traditional breadboard, but it is literally flexible. If you want to affix your prototype to a glove or a ball, good luck with a traditional breadboard. FlexBoard makes it easy. You can see a short video below and a second video presentation about the system, also.

The breadboard uses a plastic living hinge arrangement and otherwise looks more or less like a conventional breadboard. We can think of about a dozen projects this would make easier.

What’s more, it doesn’t seem like it would be that hard to fabricate using a 3D printer and some sacrificial breadboards. The paper reveals that the structures were printed on an Ender 3 using ePLA and a flexible vinyl or nylon filament. Want to try it yourself? You can!

We know what we will be printing this weekend. If you make any cool prototypes with this, be sure to let us know. Sometimes we breadboard virtually. Our favorite breadboards, though, have more than just the breadboard on them.

Continue reading “Building Circuits Flexibly”

Smart Pants Sound Alarm When Your Fly Is Undone

It’s always embarrassing to be told your fly is down. Even moreso when you realize it’s been that way since you returned from the bathroom an hour ago. [Guy Dupont] has built a device to solve this awkward issue once and for all. (Nitter)

Pictured: The Hall effect sensor and magnet attached to the zipper.

The pants contain a Hall effect sensor which has been attached inside the fly of the jeans, at the bottom of the zipper. The zipper pull itself was then fitted with a strong magnet, which triggers the sensor when the zipper is in the open position. An ESP32 in the pocket of the jeans is tasked with monitoring the sensor. If it detects that the zipper has been down for too long, it sends a notification to the wearer’s smartphone to zip up. We kind of wish they’d sound an ear-splitting klaxon, but that might draw undesired attention to the wearer.

Zipper position monitoring seems like a nightmare at first, but [Guy]’s hack shows us that it’s actually trivial with this method. The system does, however, add significant complication to what was previously a totally-analog pair of pants. Don’t expect “Big Jeans” to jump on this tech, as maintenance and waterproofing issues would likely make the hardware a pain to deal with in real life.

Plus, just imagine the frustration every morning. “Sorry, mate, not ready to head out yet – I’ve gotta pair my jeans with my smartphone.”

Continue reading “Smart Pants Sound Alarm When Your Fly Is Undone”

What’s Black, White, And Red On 20 Sides?

You won’t need to pack a full set of dice for your next game with this DIY Multifunctional Eink Gadget. [Sasa Karanović] brings us a fun device that combines a few essential aspects of tabletop gaming, D6, D12, and D20 dice rolling and a hero dashboard. While they have grand plans for a BLE networked future application, we admire the restraint to complete a V1 project before allowing scope-creep to run amok. Well played!

For this project, [Sasa] realized it needed to be battery powered and just choosing the right display for a battery powered application can be daunting. Even if you aren’t building this project, the video after the break includes a nice intro to electronic ink and low power microcontrollers for the uninitiated. We even see a graph of the completed board’s power draw from the button wake up, display refresh, and low power sleep. The project has some neat tips for building interaction into case design with the use of the display and a flexible bezel as integrated buttons. Continue reading “What’s Black, White, And Red On 20 Sides?”

Network Programming

If you want a book on network programming, there are a few classic choices. [Comer’s] TCP/IP books are a great reference but sometimes is too low level. “Unix Networking Programming” by [Stevens] is the usual choice, but it is getting a little long in the tooth, as well. Now we have “Beej’s Guide to Network Programming Using Internet Sockets.” While the title doesn’t exactly roll off the tongue, the content is right on and fresh. Best part? You can read it now in your browser or in PDF format.

All the topics you’d expect are there in ten chapters. Of course, there’s the obligatory description of what a socket is and the types of sockets you commonly encounter. Then there’s coverage of addressing and portability. There’s even a section on IPV6.

Continue reading “Network Programming”

Bringing The PIO To The FPGA

We’ve seen some pretty incredible hacks using the Raspberry Pi 2040. However, one of the most exciting bits of hardware onboard is the Programmable I/O (PIO). Not content with it just being a part of RP2040-based projects, [Lawrie Griffiths] has been porting the PIO to Verilog so anyone can enjoy it.

This particular implementation is based only on the spec that Raspberry Pi provides. For assembling PIO code, [Lawrie] uses Adafruit’s pioasm assembler they use for their MicroPython framework. There’s a simulator to test different programs, and the project targets the Blackice MX and the Ulx3s. A few example programs are included in the repo, such as outputting a pleasant guitar note over I2S and driving a chain of WS2812s.

The project is still incomplete but slowly making progress. It’s an incredible feat of reverse engineering. While the simulator can be used to debug programs, step through instructions, and inspect waveforms, the ultimate value of bringing the PIO to other systems is that now we can re-use the code. Things like the can2040, an implementation of the CAN bus protocol using the PIO. Or even a PIO-based USB host.

The Thousand Year (Radioactive) Diamond Battery

The Holy Grail of battery technology is a cell which lasts forever, a fit-and-forget device that never needs replacing. It may seem a pipe-dream, but University of Bristol researchers have come pretty close. The catch? Their battery lasts a very long time, but it generates micropower, and it’s radioactive.

They’re using a thin layer of vapour-deposited carbon-14 diamond both as a source of beta radiation, and as a semiconductor material which harvests those electrons. They’re expected to be used for applications such as intermittent sensors, where they would slowly charge a supercapacitor which could release useful amounts of power in short bursts.

It’s being touted as an environmental win because the carbon-14 is sourced from radioactive waste, but against that it’s not unreasonable to have a concern about the things being radioactive. The company commercializing the tech leads with the bold question: “What would you do with a power-cell that outlasts the device it powers?“, to which we would hope the answer won’t be “Throw it away to be a piece of orphaned radioactive waste in the environment when the device it powers is outlasted”. We’ll have to wait and see whether devices containing these things turn up on the surplus market in a couple of decades.

Fortunately the carbon-14 lives not in cartoonish vats of radioactive green slime but safely locked away in diamond, about the safest medium for it to be in. The prototype devices are also tiny, so we’re guessing that the quantity of carbon-14 involved is also small enough to not be a problem. We’re curious though whether they could become a valuable enough commodity to be reused and recycled in themselves, after all something that supplies energy for decades could power several different devices over its lifetime. Either way, it’s a major improvement over a tritium cell.