Over on Instructables, [Logan Fouts] shows us the Contrib Cal GitHub desk gadget. This build will allow you to sport your recent GitHub commit activity on your wall or desk with an attractive diffuse light display backed by a 7×4 matrix of multicolor LEDs. Motivate yourself and impress your peers!
This humble project is at the same time multifaceted. You will build a case with 3D printing, make a diffuse screen by gluing and cutting, design a LED matrix PCB using KiCad, solder everything together, and then program it all with Python. The brains of the operation are a Raspberry Pi Zero W.
The Instructables article will run you through the required supplies, help you to print the case, explain how to solder the LEDs, tell how to install the heat-set inserts for high quality screw attachments, explain wiring and power, tell you about how to use the various screws, then tell you about where to get more info and the required software on GitHub: Contrib Cal v2.
Beyond the simple world of basic PLA filaments there is a whole wild world of additives that can change this humble material for better or worse. The most common additives here are primarily to add color, but other additives seek to specifically improve certain properties of PLA. For example Bambu Lab’s new PLA Tough+ filament series that [Dr. Igor Gaspar] over at the My Tech Fun YouTube channel had over for reviewing purposes.
According to Bambu Lab’s claims for the filament, it’s supposed to have ‘up to’ double the layer adhesion strength as their basic PLA, while being much more robust when it comes to flexing and ‘taking a beating’. Yet as [Igor] goes through his battery of tests – comparing PLA Tough+ against the basic PLA – the supposedly tough filament is significantly worse in every count. That sad streak lasts until the impact tests, which is where we see a curious set of results – as shown above – as well as [Igor]’s new set of impact testing toys being put through their paces.
Of note is that although the Tough+ variants tested are consistently less brittle than their basic PLA counterparts, the Silver basic PLA variant makes an unexpectedly impressive showing. This is a good example of how color additives can have very positive impacts on a basic polymer like PLA, as well as a good indication that at least Bambu Lab’s Basic PLA in its Silver variant is basically better than Tough+ filaments. Not only does it not require higher printing temperatures, it also doesn’t produce more smelly VOCs, while being overall more robust.
Bambu Labs make indisputably excellent printers. However, that excellence comes at the cost of freedom. After a firmware release earlier this year, Bambu printers could only work with Bambu’s own slicer. For [Proper Printing], this was unacceptable, so printer modification was in order.
First on the plate was the pesky Bambu Labs nozzle. They are a pain to replace, and specialty sizes like 1.8mm are nonexistent. To remedy this flaw, a Bambu Labs compatible heat sink, an E3D V6 ring heater, and a heat break assembly are required. The ring heater was needed for clearance with the stock Bambu shroud. With the help of a 3D-printed jig, fresh holes were cut and tapped into the heat sink to make room for the E3D heat break. Some crimping to salvaged connectors and a bit of filing on the heat sink for wire routing, and Bob’s your uncle!
Do you or a loved one suffer from distorted 3D prints? Does your laser cutter produce parallelograms instead of rectangles? If so, you might be suffering from CNC skew miscalibration, and you could be entitled to significant compensation for your pain and suffering. Or, in the reality-based world, you could simply fix the problem yourself with this machine-vision skew correction system and get back to work.
If you want to put [Marius Wachtler]’s solution to work for you, it’s probably best to review his earlier work on pressure-advance correction. The tool-mounted endoscopic camera he used in that project is key to this one, but rather than monitoring a test print for optimum pressure settings, he’s using it to detect minor differences in the X-Y feed rates, which can turn what’s supposed to be a 90-degree angle into something else.
The key to detecting these problems is the so-called ChArUco board, which is a hybrid of a standard chess board pattern with ArUco markers added to the white squares. ArUco markers are a little like 2D barcodes in that they encode an identifier in an array of black and white pixels. [Marius] provides a PDF of a ChArUco that can be printed and pasted to a board, along with a skew correction program that analyzes the ChArUco pattern and produces Klipper commands to adjust for any skew detected in the X-Y plane. The video below goes over the basics.
As the art of 3D printing has refined itself over the years, a few accessories have emerged to take prints to the next level. One of them is the threaded insert, a a piece of machined brass designed to be heat-set into a printed hole in the part. They can be placed by hand with a soldering iron, or for the really cool kids, with a purpose-built press. They look great and they can certainly make assembly of a 3D printed structure very easy, but I’m here to tell you they are not as necessary as they might seem. There’s an alternative I have been using for years which does essentially the same job without the drama. Continue reading “No Need For Inserts If You’re Prepared To Use Self-Tappers”→
3D prints destined for presentation need smooth surfaces, and that usually means sanding. [Uncle Jessy] came across an idea he decided to try out for himself: spraying Bondo spot putty onto a 3D print. Bondo spot putty comes from a tube, cures quickly, and sands smoothly. It’s commonly used to hide defects and give 3D prints a great finish. Could spraying liquified Bondo putty onto a 3D print save time, or act as a cheat code for hiding layer lines? [Uncle Jessy] decided to find out.
Gaps and larger flaws still need to be filled by hand, but spray application seems to be a big time saver if nothing else.
The first step is to turn the distinctive red putty into something that can be sprayed through a cheap, ten dollar airbrush. That part was as easy as squeezing putty into a cup and mixing in acetone in that-looks-about-right proportions. A little test spray showed everything working as expected, so [Uncle Jessy] used an iron man mask (smooth surfaces on the outside, textured inside) for a trial run.
Spraying the liquified Bondo putty looks about as easy as spraying paint. The distinctive red makes it easy to see coverage, and it cures very rapidly. It’s super easy to quickly give an object an even coating — even in textured and uneven spots — which is an advantage all on its own. To get a truly smooth surface one still needs to do some sanding, but the application itself looks super easy.
Is it worth doing? [Uncle Jessy] says it depends. First of all, aerosolizing Bondo requires attention to be paid to safety. There’s also a fair bit of setup involved (and a bit of mess) so it might not be worth the hassle for small pieces, but for larger objects it seems like a huge time saver. It certainly seems to cover layer lines nicely, but one is still left with a Bondo-coated object in the end that might require additional sanding, so it’s not necessarily a cheat code for a finished product.
If you think the procedure might be useful, check out the video (embedded below) for a walkthrough. Just remember to do it in a well-ventilated area and wear appropriate PPE.
One of the interesting things about Prusa’s FDM 3D printers is the availability of official upgrade kits, which allow you to combine bits off an older machine with those of the target machine to ideally save some money and not have an old machine gathering dust after the upgrade. While for a bedslinger-to-bedslinger upgrade this can make a lot of sense, the bedslinger to CoreXY Core One upgrade path is a bit more drastic. Recently the [Aurora Tech] channel had a look at which upgrade path makes the most sense, and in which scenario.
A big part of the comparison is the time and money spent compared to the print result, as you have effectively four options. Either you stick with the MK4S, get the DIY Core One (~8 hours of assembly time), get the pre-assembled Core One (more $$), or get the upgrade kit (also ~8 hours). There’s also the fifth option of getting the enclosure for the MK4S, but it costs about as much as the upgrade kit, so that doesn’t make a lot of logical sense.
In terms of print quality, it’s undeniable that the CoreXY motion system provides better results, with less ringing and better quality with tall prints, but unless you’re printing more than basic PLA and PETG, or care a lot about the faster print speeds of the CoreXY machine with large prints, the fully enclosed Core One is a bit overkill and sticking with the bedslinger may be the better choice.
The long and short of it is that you have look at each option and consider what works best for your needs and your wallet.