Open Source 5-Axis Printer Has Its Own Slicer

Three-axis 3D printing has been with us long enough that everybody knows the limitations, but so far, adding extra axes has been very much a niche endeavor. [Daniel] at Fractal Robotics wants to change that, with the Fractal 5 Pro 5-axis printer, and its corresponding Fractal Cortex slicer.

The printer looks like an extra-beefy Voron from a distance, which is no surprise as [Daniel] admits to taking heavy inspiration from the Voron Trident. The Fractal 5 shares a core-XY geometry with the Voron, using beefy 30 mm x 30 mm extrusions. Also like the Voron, it runs Klipper on a Raspberry Pi hiding in the base. Under a standard-looking printhead using a BondTech extruder and E3D volcano hotend, we find the extra two axes hiding under the circular build plate. The B axis is a gantry that can pivot the build plate assembly a full 90 degrees; the A axis spins the plate without limit thanks to the slip rings built into the design.

The extruder may look fairly normal, but it has actually been designed very carefully to allow the nozzle to get as close as possible to the build plate when the B-axis is at 90 degrees. It looks like the E3D hotend is actually the limiting factor there, which gives plenty of design freedom when planning prints in the accompanying Fractal Cortex slicer.

Continue reading “Open Source 5-Axis Printer Has Its Own Slicer”

Squishy Beyblades Made With 3D Printer Fail To Compete In The Arena

When Beyblades first came out a couple of decades ago, they quickly became a fad across Japan and several Western countries. There was a whole ecosystem of parts that you could buy and use to build competitive fighting spinning tops. These days, though — 3D printers are ubiquitous. There’s very little stopping you from printing whatever Beyblade-compatible parts your heart desires, as [JettKuso] demonstrates.

For [JettKuso], the rubber attack tips were a personal favorite. They had high grip on the plastic arena floor and would allow a top to make rapid, aggressive moves that would knock other tops out of the arena. Not desiring to import specific Beyblade parts at great expense, he decided to print some rubber tips and associated parts instead. The result? Squishy Beyblades!

[JettKuso] built various tops with official and custom TPU parts, and put them in battles to see what worked and what didn’t. In many cases, the TPU replacement parts didn’t make a big difference or proved worse than the standard parts. However, when [JettKuso] got crazy, he found one thing that kind of worked. A mega-heavy TPU top blade, which weighed as much as the standard metal rings, was able to successfully win battles against less competitive standard builds.

Ultimately, the video serves as a testament to the developers of the original toys themselves. It’s not so simple to just print up some parts and have them be competitive with the tried-and-tested gear that comes off the store shelves. The experience ultimately gave [JettKuso] a greater appreciation for all the thought that went into the commercial toys. Video after the break.

Continue reading “Squishy Beyblades Made With 3D Printer Fail To Compete In The Arena”

A filament extruder is shown on a workbench. On the front is a knob and the display of a PID controller. A black geared spool is mounted on the top of the extruder, and on the right, a clear plastic bottle is positioned over a metal rod.

Turning Waste Plastic Into Spools Of Filament

Despite being a readily-available source of useful plastic, massive numbers of disposable bottles go to waste every day. To remedy this problem (or take advantage of this situation, depending on your perspective) [Igor Tylman] created the PETmachine, an extruder to make 3D printer filament from PET plastic bottles.

The design of the extruder is fairly standard for such machines: a knife mounted to the frame slices the bottle into one long strip, which feeds through a heated extruder onto a spool which pulls the plastic strand through the system. This design stands out, though, in its documentation and ease of assembly. The detailed assembly guides, diagrams, and the lack of crimped or soldered connections all make it evident that this was designed to be built in a classroom. The filament produced is of respectable quality: 1.75 mm diameter, usually within a tolerance of 0.05 mm, as long as the extruder’s temperature and the spool’s speed were properly calibrated. However, printing with the filament does require an all-metal hotend capable of 270 ℃, and a dual-drive extruder is recommended.

One issue with the extruder is that each bottle only produces a short strand of filament, which isn’t sufficient for printing larger objects. Thus, [Igor] also created a filament welder and a spooling machine. The welder uses an induction coil to heat up a steel tube, inside of which the ends of the filament sections are pressed together to create a bond. The filament winder, for its part, can wind with adjustable speed and tension, and uses a moving guide to distribute the filament evenly across the spool, avoiding tangles.

If you’re interested in this kind of extruder, we’ve covered a number of similar designs in the past. The variety of filament welders, however, is a bit more limited.

Thanks to [RomanMal] for the tip!

Stephen Hawes operating his LumenPnP

The LumenPnP Pasting Utility: Never Buy Solder Stencils Again?

Over on his YouTube channel the vivacious [Stephen Hawes] tells us that we never need to buy solder stencils again!

A big claim! And he is quick to admit that his printed solder paste isn’t presently quite as precise as solder stencils, but he is reporting good success with his technique so far.

[Stephen] found that he could print PCBs with his fiber laser, populate his boards with his LumenPnP, and reflow with his oven, but… what about paste? [Stephen] tried making stencils, and in his words: “it sucked!” So he asked himself: what if he didn’t need a stencil? He built a Gerber processing, G-code generating, machine-vision implemented… website. The LumenPnP Pasting Utility: https://paste.opulo.io/

Continue reading “The LumenPnP Pasting Utility: Never Buy Solder Stencils Again?”

Destructive Testing Of ABS And Carbon Fiber Nylon Parts

PAHT-CF part printed at 45 degrees, with reinforcing bolt, post-failure. (Credit: Functional Print Friday, YouTube)
PAHT-CF part printed at 45 degrees, with reinforcing bolt, post-failure. (Credit: Functional Print Friday, YouTube)

The good part about FDM 3D printing is that there are so many different filament types and parameters to choose from. This is also the bad part, as it can often be hard to tell what impact a change has. Fortunately we got destructive testing to provide us with some information here. Case in point [Functional Print Friday] on YouTube recently testing out a few iterations of a replacement part for a car.

The original part was in ABS, printed horizontally in a Bambu Lab FDM printer, which had a protruding element snapped off while in use. In addition to printing a replacement in carbon fiber-reinforced nylon (PAHT-CF, i.e. PA12 instead of the typical PA6), the part was now also printed at a 45° angle. To compare it with the original ABS filament in a more favorable way, the same part was reprinted at the same angle in ABS.

Another change was to add a machine screw to the stop element of the part, which turned out to make a massive difference. Whereas the original horizontal ABS print failed early and cleanly on layer lines, the angled versions put up much more of a fight, with the machine screw-reinforced stop combined with the PA12 CF filament maxing out the first meter.

The take-away here appears to be that not only angles are good, but that adding a few strategic metal screws can do wonders, even if you’re not using a more exotic filament type.

Continue reading “Destructive Testing Of ABS And Carbon Fiber Nylon Parts”

The bed of a small CNC machine is shown. A plastic tub is on the bed, and in the tub is a sheet of metal under a pale green solution. In place of the spindle of the CNC, there is a rectangular orange tube extending down into the solution. A red wire runs to this tube, and a black wire runs to the sheet of metal in the tub.

Painting In Metal With Selective Electroplating

Most research on electroplating tries to find ways to make it plate parts more uniformly. [Ajc150] took the opposite direction, though, with his selective electroplating project, which uses an electrode mounted on a CNC motion system to electrochemically print images onto a metal sheet (GitHub repository).

Normally, selective electroplating would use a mask, but masks don’t allow gradients to be deposited. However, electroplating tends to occur most heavily at the point closest to the anode, and the effect gets stronger the closer the anode is. To take advantage of this effect, [ajc150] replaced the router of an inexpensive 3018 CNC machine with a nickel anode, mounted an electrolyte bath in the workspace, and laid a flat steel cathode in it. When the anode moves close to a certain point on the steel cathode, most of the plating takes place there.

To actually print an image with this setup, [ajc150] wrote a Python program to convert an image into set of G-code instructions for the CNC. The darker a pixel of the image was, the longer the electrode would spend over the corresponding part of the metal sheet. Since darkness wasn’t linearly proportional to plating time, the program used a gamma correction function to adjust times, though this did require [ajc150] to recalibrate the setup after each change. The system works well enough to print recognizable images, but still has room for improvement. In particular, [ajc150] would like to extend this to a faster multi-nozzle system, and have the algorithm take into account spillover between the pixel being plated and its neighbors.

This general technique is reminiscent of a metal 3D printing method we’ve seen before. We more frequently see this process run in reverse to cut metal.

Nylon-Like TPU Filament: Testing CC3D’s 72D TPU

Another entry in the world of interesting FDM filaments comes courtesy of CC3D with their 72D TPU filament, with [Dr. Igor Gaspar] putting it to the test in his recent video. The use of the Shore hardness D scale rather than the typical A scale is a strong indication that something is different about this TPU. The manufacturer claims ‘nylon-like’ performance, which should give this TPU filament much more hardness and resistance to abrasion. The questions are whether this filament lives up to these promises, and whether it is at all fun to print with.

The CC3D 72D TPU filament used to print a bicycle's handlebar. (Credit: My Tech Fun, YouTube)
The CC3D 72D TPU filament used to print a bicycle’s handlebar grips. (Credit: My Tech Fun, YouTube)

TPU is of course highly hydrophilic, so keeping the filament away from moisture is essential. Printing temperature is listed on the spool as 225 – 245°C, and the filament is very bendable but not stretchable. For the testing a Bambu Lab X-1 Carbon was used, with the filament directly loaded from the filament dryer. After an overnight print session resulted in spaghetti due to warping, it was found that generic TPU settings  at 240ºC with some more nylon-specific tweaks seemed to give the best results, with other FDM printers also working well that way.

The comparison was against Bambu Lab’s 68D TPU for AMS. Most noticeable is that the 72D TPU easily suffers permanent deformation, while being much more wear resistant than e.g. PLA. That said, it does indeed seem to perform more like polyamide filaments, making it perhaps an interesting alternative there. Although there’s some confusion about whether this TPU filament has polyamide added to it, it seems to be pure TPU, just like the Bambu Lab 68D filament.

Continue reading “Nylon-Like TPU Filament: Testing CC3D’s 72D TPU”