A variety of red and black glass objects are shown on a white background. In the foreground, there are two black spiral-patterned earrings. To the left is a red and black shape with three points on the top. On the right, a deformed glass sheet is shown bent over concentric red and black glass rings. In the center top is a red glass vase with a roughly-textured exterior.

Paste Extrusion For 3D Printing Glass And Eggshells

In contrast to the success of their molten-plastic cousins, paste extrusion 3D printers have never really attained much popularity. This is shame because, as the [Hand and Machine] research group at the University of New Mexico demonstrate, you can use them to print with some really interesting materials, including glass and eggshell. Links to the respective research papers are here: glass and eggshells, with presentations in the supplemental materials.

To print with glass, the researchers created a clay-like paste out of glass frit, methyl cellulose and xanthan gum as shear-thinning binders, and water. They used a vacuum chamber to remove bubbles, then extruded the paste from a clay 3D printer. After letting the resulting parts dry, they fired them in a kiln at approximately 750 ℃ to burn away the binder and sinter the frit. This introduced some shrinkage, but it was controllable enough to at least make decorative parts, and it might be predictable enough to make functional parts after some post-processing.

Path generation for the printer was an interesting problem; the printer couldn’t start and stop extrusion quickly, so [Hand and Machine] developed a custom slicer to generate tool paths that minimize material leakage. To avoid glass walls collapsing during firing, they also wrote another slicer to maintain constant wall thicknesses.

The process for printing with eggshell was similar: the researchers ground eggshells into a powder, mixed this with water, methyl cellulose and xanthan gum, and printed with the resulting paste. After drying, the parts didn’t need any additional processing. The major advantage of these parts is their biodegradability, as the researchers demonstrated by printing a biodegradable pot for plants. To be honest, we don’t think that this will be as useful an innovation for hackers as the glass could be, but it does demonstrate the abilities of paste extrusion.

The same team has previously used a paste printer to 3D print in metal. If you don’t have a paste printer, it’s also possible to print glass using a laser cutter, or you could always make your own paste extruder.

Elegoo Rapid PETG Vs PETG Pro: Same Price, Similar Specs, Which To Buy?

Even within a single type of FDM filament there is an overwhelming amount of choice. Take for example Elegoo’s PETG filament offerings, which include such varieties like ‘Pro’ and ‘Rapid’. Both cost the same, but is there a reason to prefer one over the other, perhaps even just for specific applications? To test this, [Dr. Igor Gaspar] over at the My Tech Fun YouTube channel bought some spools of these two filaments and subjected both to a series of tests.

Obviously, the Rapid filament is rated for higher extrusion speeds – <270 vs <600 mm/s – while the website claims a higher required nozzle temperature that confusingly does not match those listed on the spool. There are quite a few differences in the listed specifications, including the physical and mechanical properties, which make it hard to draw any immediate conclusions. Could you perhaps just use Rapid PETG and forget about the Pro version?

Test objects were printed with a Bambu Lab P1P with an AMS unit. After calibrating the ideal temperature for each filament, a tensile break test gave a win to the Rapid PETG, followed by a layer adhesion test win. This pattern continued across further tests, with Rapid PETG either matching or beating the Pro PETG.

There are only two advantages of the Pro version that can be seen here, which are less moisture sensitivity and  stringing risk, and you of course get the luxury cardboard spool with the closed edges. Whether that’s enough to make you go ‘Pro’ remains to be seen, of course.

Continue reading “Elegoo Rapid PETG Vs PETG Pro: Same Price, Similar Specs, Which To Buy?”

A photo of a Stirling Engine attached to a bike

Building A Stirling Engine Bike

Over on his YouTube channel [Tom Stanton] shows us how to build a Stirling Engine for a bike.

A Stirling Engine is a heat engine, powered by the expansion and contraction of a working fluid (such as air) which is heated and cooled in a cycle. In the video [Tom] begins by demonstrating the Stirling Engine with some model engines and explains the role of the displacer piston. His target power output for his bike engine is 150 watts (about 0.2 horsepower) which is enough power to cycle at about 15 mph (about 24 km/h). After considering a CPU heatsink as the cooling system he decided on water cooling instead.

Continue reading “Building A Stirling Engine Bike”

This Service Life Study Really Grinds Our Gears

3D printing is arguably over-used in the maker community. It’s just so easy to run off a quick prototype and then… well, it’s good enough, right? Choosing the right plastic can go a long way to making sure your “good enough” prototype really is good enough for long term use. If you’re producing anything with gearing, you might want to cast your eyes to a study by [Mert Safak Tunalioglu] and [Bekir Volkan Agca] titled: Wear and Service Life of 3-D Printed Polymeric Gears.

Photograph of the test rig used in the study.
No spin doctoring here, spinning gears.

The authors printed simple test gears in ABS, PLA, and PETG, and built a test rig to run them at 900 rpm with a load of 1.5 Nm against a steel drive gear. The gears were pulled off and weighed every 10,000 rotations, and allowed to run to destruction, which occurred in the hundreds-of-thousands of rotations in each case. The verdict? Well, as you can tell from the image, it’s to use PETG.

The authors think that this is down to PETG’s ductility, so we would have liked to see a hard TPU added to the mix, to say nothing of the engineering filaments. On the other hand, this study was aimed at the most common plastics in the 3D printing world and also verified a theoretical model that can be applied to other polymers.

This tip was sent in by [Benjamin], who came across it as part of the research to build his first telescope, which we look forward to seeing. As he points out, it’s quite lucky for the rest of us that the U.S. government provides funding to make such basic research available, in a way his nation of France does not. All politics aside, we’re grateful both to receive your tips and for the generosity of the US taxpayer.

We’ve seen similar tests done by the community — like this one using worm gears — but it’s also neat to see how institutional science approaches the same problem. If you need oodles of cycles but not a lot of torque, maybe skip the spurs and print a magnetic gearbox. Alternatively you break out the grog and the sea shanties and print yourself a capstan.

Introducing PooLA Filament: Grass Fiber-Reinforced PLA

We’re probably all familiar with adding wood dust, hemp and carbon fibers to PLA filament, but there are so many other fillers one could add. During the completely unrelated recent heatwave in Germany, [Stefan] from CNCKitchen decided to give a new type of biodegradable filler type a shot by scooping some freshly dried cow patties off the very picturesque grazing fields near his place. In the resulting video a number of questions are answered about this ‘PooLA’ that nobody was asking, such as whether it makes for a good filler, and whether it smells bad while printing.

Perhaps unsurprisingly to those who have spent any amount of time around large herbivores like cows, cow dung doesn’t smell bad since it’s mostly composed of the grass fibers that are left over after the cow’s multiple stomachs and repeated chewing have done their thing. As [Stefan] and his colleagues thus found out was that printing with PooLA smells like printing with grass.

As for the practical benefits of PooLA, it adds a nice coloring, but like other ‘reinforced’ PLA filaments seems to trade flexibility for stiffness, so that at ratios of cow dung powder between 5 to 20% added to the PLA powder the test parts would break faster. Creating the filament was also a bit of a chore, for reasons that [Stefan] still has to figure out.

That said, aside from the technically unneeded bacterial corpses and other detritus in cow patties, using grass fibers in FDM filament isn’t a crazy idea, and might fit right in there with other fibers.

Continue reading “Introducing PooLA Filament: Grass Fiber-Reinforced PLA”

A 3D printer is in the process of printing a test piece. The printer has two horizontal linear rails at right angles to each other, with cylindrical metal rods mounted horizontally on the rails, so that the rods cross over the print bed. The print head slides along these rods.

An Open-Concept 3D Printer Using Cantilever Arms

If you’re looking for a more open, unenclosed 3D printer design than a cubic frame can accommodate, but don’t want to use a bed-slinger, you don’t have many options. [Boothy Builds] recently found himself in this situation, so he designed the Hi5, a printer that holds its hotend between two cantilevered arms.

The hotend uses bearings to slide along the metal arms, which themselves run along linear rails. The most difficult part of the design was creating the coupling between the guides that slides along the arms. It had to be rigid enough to position the hotend accurately and repeatably, but also flexible enough avoid binding. The current design uses springs to tension the bearings, though [Boothy Builds] eventually intends to find a more elegant solution. Three independent rails support the print bed, which lets the printer make small alterations to the bed’s tilt, automatically tramming it. Earlier iterations used CNC-milled bed supports, but [Boothy Builds] found that 3D printed plastic supports did a better job of damping out vibrations.

[Boothy Builds] notes that the current design puts the X and Y belts under considerable load, which sometimes causes them to slip, leading to occasional layer shifts and noise in the print. He acknowledges that the design still has room for improvement, but the design seems quite promising to us.

This printer’s use of cantilevered arms to support the print head puts it in good company with another interesting printer we’ve seen. Of course, that design element does also lend itself to the very cheapest of printers.

Continue reading “An Open-Concept 3D Printer Using Cantilever Arms”

Trickle Down: When Doing Something Silly Actually Makes Sense

One of the tropes of the space race back in the 1960s, which helped justify the spending for the part of the public who thought it wasn’t worth it, was that the technology developed for use in space would help us out here back on earth. The same goes for the astronomical expenses in Formula 1, or even on more pedestrian tech like racing bikes or cinematography cameras. The idea is that the boundaries pushed out in the most extreme situations could nonetheless teach us something applicable to everyday life.

This week, we saw another update from the Minuteman project, which is by itself entirely ridiculous – a 3D printer that aims to print a 3D Benchy in a minute or less. Of course, the Minuteman isn’t alone in this absurd goal: there’s an entire 3D printer enthusiast community that is pushing the speed boundaries of this particular benchmark print, and times below five minutes are competitive these days, although with admittedly varying quality. (For reference, on my printer, a decent-looking Benchy takes about half an hour, but I’m after high quality rather than high speed.)

One could totally be forgiven for scoffing at the Speed Benchy goal in general, the Minuteman, or even The 100, another machine that trades off print volume for extreme speed. But there is definitely trickle-down for the normal printers among us. After all, pressure advance used to be an exotic feature that only people who were using high-end homemade rigs used to care about, and now it’s gone mainstream. Who knows if the Minuteman’s variable temperature or rate smoothing, or the rigid and damped frames of The 100, or its successor The 250, will make normal printers better.

So here’s to the oddball machines, that push boundaries in possibly ridiculous directions, but then share their learnings with those of us who only need to print kinda-fast, but who like to print other things than little plastic boats that don’t even really float. At least in the open-source hardware community, trickle-down is very real.