Take A Ride In The Bathysphere

[Tom Scott] has traveled the world to see interesting things.  So when he’s impressed by a DIY project, we sit up and listen. In this case, he’s visiting the Bathysphere, a project created by a couple of passionate hobbyists in Italy. The project is housed at Explorandia, which based on google translate, sounds like a pretty epic hackerspace.

The Bathysphere project itself is a simulation of a submarine. Sounds simple, but this project is anything but.  There are no VR goggles involved.  Budding captains who are up for the challenge find themselves inside the cockpit of a mini-submarine. The sub itself is on a DIY motion platform. Strong electric motors move the system causing riders to feel like they are truly underwater. Inside the cockpit, the detail is amazing. All sorts of switches, lights, and greebles make for a realistic experience.  An electronic voice provides the ship status, and let’s the crew know of any emergencies. (Spoiler alert — there will be emergencies!)

The real gem is how this simulation operates. A Logitec webcam is mounted on an XY gantry. This camera then is dipped underwater in a small pond. Video from the camera is sent to a large monitor which serves as the sub’s window. It’s all very 1960’s simulator tech, but the effect works. The subtle movements of the simulator platform really make the users feel like they are 20,000 leagues under the sea.

Check out the video after the break for more info!

Continue reading “Take A Ride In The Bathysphere”

Supercon 2022: [Liz McFarland] Builds Golden Wings, Shows You How

Are you, by any chance, wondering about giving yourself wings? You should listen to [Liz McFarland] sharing her experience building a Wonder Woman suit, and not just any – the Golden Eagle suit from Wonder Woman 1984, adorned with a giant pair of wings. If a suit like that is in your plans, you’ll be warmly welcomed at a cosplay convention – and [Liz] had her sights on the San Diego Comic Con. With an ambitious goal of participating in the Comic Con’s cosplay contest, the suit had to be impressive – and impressive, it indeed was, not just for its looks, but for its mechanics too.

[Liz] tells us everything – from producing the wings and painting them, to keeping them attached to the body while distributing the weight, and of course, things like on-venue nuances and safety with regards to other participants. The dark side of cosplay building reality isn’t hidden either – talking, of course, about the art of staying within a reasonably tight budget. This build takes advantage of a hackerspace that [Liz] is an active member in – the [Crash Space] in LA. Everything is in – lasercutting, 3D printing, and even custom jigs for bending wing-structual PVC pipes play a role.

It would have been a travesty to not have the wings move at will, of course, and [Liz] had all the skills you could want for making the wings complete. She went for two linear actuators, walking us through the mechanical calculations and considerations required to have everything fit together. It’s not easy to build a set of wings on its own, let alone one that moves and doesn’t crumble as you use it – if you have already attempted bringing mechanical creations like this into life, you can see the value in what [Liz] shares with us, and if you haven’t yet delved into it, this video will help you avoid quite a few pitfalls while setting an example you can absolutely reach.

The suit was a resounding success at the con, and got [Liz] some well-earned awards – today, the suit’s story is here for the hackers’ world. Now, your cosplay aspirations have an inspiring real-life journey to borrow from, and we thank [Liz] for sharing it with us.

Continue reading “Supercon 2022: [Liz McFarland] Builds Golden Wings, Shows You How”

Blind Camera: Visualizing A Scene From Its Sounds Alone

A visualization by the Blind Camera based on recorded sounds and the training data set for the neural network. (Credit: Diego Trujillo Pisanty)
A visualization by the Blind Camera based on recorded sounds and the training data set for the neural network. (Credit: Diego Trujillo Pisanty)

When we see a photograph or photo of a scene, we can likely imagine what sounds would go with it, but what if this gets inverted, and we have to imagine the scene that goes with the sounds? How close would we get to reconstructing the scene in our mind, without the biases of our upbringing and background rendering this into a near-impossible task? This is essentially the focus of a project by [Diego Trujillo Pisanty] which he calls Blind Camera.

Based on video data recorded in Mexico City, a neural network created using Tensorflow 3 was trained using an RTX 3080 GPU on a dataset containing frames from these videos that were associated with a sound. As a result, when the thus trained neural network is presented with a sound profile (the ‘photo’), it’ll attempt to reconstruct the scene based on this input and its model, all of which has been adapted to run on a single Raspberry Pi 3B board.

However, since all the model knows are the sights and sounds of Mexico City, the resulting image will always be presented as a composite of scenes from this city. As [Diego] himself puts it: for the device, everything is a city. In a way it is an excellent way to demonstrate how not only neural networks are limited by their training data, but so too are us humans.

Continue reading “Blind Camera: Visualizing A Scene From Its Sounds Alone”

Detail of a circuit sculpture in the shape of a lighthouse

Op Amp Contest: This Lighthouse Sculpture Flickers In The Rhythm Of Chaos

Op amps are typically used to build signal processing circuits like amplifiers, integrators and oscillators. Their functionality can be described by mathematical formulas that have a single, well-defined solution. However, not every circuit is so well-behaved, as Leon Chua famously showed in the early 1980s: if you make a circuit with three reactive elements and a non-linear component, the resulting oscillation will be chaotic. Every cycle of the output will be slightly different from its predecessors, and the circuit might flip back and forth between different frequencies.

A circuit sculpture in the shape of a lighthouseA light modulated with a chaotic signal will appear to flicker like a candleflame, which is the effect [MaBe42] was looking for when he built a lighthouse-shaped circuit sculpture. Its five differently-colored LEDs are driven by a circuit known as Sprott’s chaotic jerk circuit. A “jerk”, in this context, is the third-order derivative of a variable with respect to time – accordingly, the circuit uses three RC integrators to implement its differential equation, along with a diode to provide nonlinearity.

The lighthouse has three chaotic oscillators, one in each of its legs. Their outputs are used to drive simple pulse-width modulators that power the LEDs in the top of the tower. [MaBe42] used the classic LM358 op amp for most of the circuits, along with 1N4148 diodes where possible and 1N4004s where needed – not for their higher power rating, but for their stronger leads. As is common in circuit sculptures, the electronic components are also part of the tower’s structure, and it needs to be quite sturdy to support its 46 cm height.

[MaBe42] used 3D printed jigs to help in assembling the various segments, testing each circuit before integrating it into the overall structure. The end result is a beautiful ornament for any electronics lab: a wireframe structure with free-hanging electronic components and randomly flickering lights on top. Want to learn more about circuit sculpture? Check out this great talk from Remoticon 2020.

Continue reading “Op Amp Contest: This Lighthouse Sculpture Flickers In The Rhythm Of Chaos”

Front and back views of a square, purple PCB with op amps and BNC outputs

Op Amp Contest: Generate Spirograph Shapes Using Only Op Amps And Math

If you’re a child of the ’80s or ’90s, chances are you’ve spent hours tracing out intricate patterns using the pens and gears of a Spirograph kit. Simple as those parts may be, they’re actually a very clever technique for plotting mathematical functions called hypotrochoids and epitrochoids. [Craig] has spent some time analyzing these functions, and realized you can also implement them with analog circuits. He used this knowledge to design a device called Op Art which generates Spirograph shapes on your oscilloscope using just a handful of op amps.

A spirograph shape shown on an oscilloscope screenTo draw either a hypotrochoid or an epitrochoid, you need to generate sine and cosine waves of various frequencies, and then add them with a certain scaling factor. Generating sines and cosines is not so hard to do with op amps, but making an adjustable oscillator that reliably churns out matching sine and cosine waves over a large frequency range turned out to be tricky. After a bit of experimentation, [Craig] discovered that a phase-shift oscillator was the right topology, not only for its adjustability but also because it generates sine, cosine and inverted sine terms that all come in handy when drawing various Spirograph shapes. Continue reading “Op Amp Contest: Generate Spirograph Shapes Using Only Op Amps And Math”

The Most Ornate Birdbath You’ve Ever Seen

When one thinks of art, a birdbath may not be the first thing that comes to mind. However, there is no denying that the La Fontaine aux Oiseaux (The Bird Fountain) is a true work of art. This automaton, created by automaton maker [François Junod] in collaboration with 20 different workshops and craftsmen, represents thousands of hours of work and boasts a complex beauty that is both visible and hidden.The finished Bird Fountain, with all it's jewel encrusted exterior pieces

Commissioned by the Van Cleef & Arpels jewelry company, this purely mechanical display piece features a pair of jewel-encrusted birds that perform a little routine around the edge of the bath every hour. All the birds’ appendages move while bird song is added with the help of a whistle and bellows. The “water” is also mechanized, with a series of metal plates moving together to create ripple effects, while a water lily opens and closes and a dragonfly flutters above the surface.

The overall effect of this ridiculously over-the-top mechanical art piece is absolutely mesmerizing. Even if the bejeweled exterior isn’t quite your style, you can still appreciate its intricate workings thanks the video after the break giving us a peek at the development.

We’ve featured some of [François]’ other work before, which is equally impressive and displays the mechanics in all it’s glory. If you want to try your hand at making automatons, 3D printing is the perfect way to get started.

Continue reading “The Most Ornate Birdbath You’ve Ever Seen”

Supercon 2022: [Jorvon Moss] Gives His Robots A Soul

How do you approach your robot designs? Maybe, you do it from a ‘oh, I have these cool parts’ position, or from a ‘I want to make a platform on wheels for my experiments’ perspective. In that case, consider that there’s a different side to robot building – one where you account for your robot’s influence on what other people around feel about them, and can get your creations the attention they deserve. [Jorvon ‘Odd-Jayy’ Moss]’s robots are catchy in a way that many robot designs aren’t, and they routinely go viral online. What are his secrets to success? A combination of an art background, a Bachelor of Fine Arts in illustration, and a trove of self-taught electronics skills helped him develop a standout approach to robot building.

Now, [Jorvon] has quite a few successful robot projects under his belt, and at Supercon 2022, he talks about how our robots’ looks and behaviour shapes their perception. How do your own robots look to others, and what feelings do they evoke? With [Jorvon], you will go through fundamentals of what makes a robot look lively, remarkable, catchy or creepy, and it’s his unique backgrounds that let him give you a few guidelines on what you should and should not do when building a certain kind of robot.

You’ll do good watching this video – it’s short and sweet, and shows you a different side to building robots of your dreams; plus, the robot riding around on the stage definitely makes this presentation one of a kind. No matter your robot’s technical complexity, it’s significant that it can make people go ‘wow’ when they see it. Not all robots are there to single-mindedly perform a simple task, after all – some are meant to travel around the world.

Continue reading “Supercon 2022: [Jorvon Moss] Gives His Robots A Soul”