Controlling This Smartwatch Is All In The Wrist

Smartwatches are pretty great. In theory, you’ll never miss a notification or a phone call. Plus, they can do all kinds of bio-metric tracking since they’re strapped to one of your body’s pulse points. But there are downsides. One of the major ones is that you end up needing two hands to do things that are easily one-handed on a phone. Now, you could use the tip of your nose like I do in the winter when I have mittens on, but that’s not good for your eyes. It seems that the future of smartwatch input is not in available appendages, but in gesture detection.

Enter WristWhirl, the brain-child of Dartmouth and University of Manitoba students [Jun Gong], [Xing-Dong Yang], and [Pourang Irani]. They have built a prototype smartwatch that uses continuous wrist movements detected by IR proximity sensors to control popular off-the-shelf applications. Twelve pairs of dirt-cheap IR sensors connected to an Arduino Due detect any of eight simple gestures made by the wearer to do tasks like opening the calendar, controlling a music player, panning and zooming a map, and playing games like Tetris and Fruit Ninja. In order to save battery, a piezo senses pinch between the user’s thumb and forefinger and uses this input to decide when to start and stop gesture detection.

According to their paper (PDF warning), the gesture detection is 93.8% accurate. To get this data, the team had their test subjects perform each of the eight gestures under different conditions such as walking vs. standing and doing either with the wrist in watch-viewing position or hanging down at their side. Why not gesture your way past the break to watch a demo?

If you’re stuck on the idea of playing Tetris with gestures, there are other ways.

Continue reading “Controlling This Smartwatch Is All In The Wrist”

3D Printed Moon Phase Clock

Someone once observed that the moon is a harsh mistress. But that doesn’t mean you can’t keep track of her, specially with this awesome moon phase clock that [G4lile0] designed and built.

It uses a 3D printed moon model combined with a series of LEDs to create the phases. These LEDs are driven by an Arduino that calculates the phase to show, as well as driving a small OLED display that shows the date and time. There is even a party mode for all of those lunar raves that you host.

[G4lile0] has done an excellent job of documenting the code that drives the lamp, so it would be easy to add features, or adapt this design to show the phases of another moon or add other features. It’s an excellent overall design, and kudos to [G4lile0] for doing it all with open source tools like FreeCAD.

Continue reading “3D Printed Moon Phase Clock”

The Little Mechanism That Made Precise Time-keeping Possible

There are few things to which we pay as much attention as the passage of time. We don’t want to be late for work, or a date. Even more importantly, we don’t want to age and die. Good time keeping is an all important human activity, and we started to worry about it as soon as we abandoned our hunter-gatherer lifestyle and agriculture and commerce emerged.

By de:Benutzer:Flyout - own work, http://de.wikipedia.org/wiki/Bild:Kerzenuhr.jpg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1783765
A candle clock

Measuring time needs two things: a repetitive process to mark equal increments of time, and a way of tracking and displaying the result. The first timekeeping devices relied of course on the movement of the sun. Ancient Egyptians, around 3500 BC, built obelisks that, by casting a shadow on the ground at different positions, gave an approximate idea of the time. Next came the use of some medium that was consumed at a regular pace: candle, incense, water and sand clocks are examples. A great advancement came with the advent of the mechanical clock, and here is where the escapement mechanism appears.

Continue reading “The Little Mechanism That Made Precise Time-keeping Possible”

ESP Clock Needs More Power

[Victor-Chew] is tired of setting clocks. After all, here we are in the 21st century, why do we have to adjust clocks (something we just did for daylight savings time)? That’s why [Victor] came up with ESPClock.

Based on a $2 Ikea analog clock, [Victor] had a few design goals for the project:

  • Automatically set the time from the network
  • Automatically adjust for daylight savings time
  • Not cost much more than a regular clock
  • Run for a year on batteries

The last goal is the only one that remains unmet. Even with a large battery pack, [Victor’s] clock runs out of juice in a week or so. You can see some videos of the clock syncing with network time, below.

Continue reading “ESP Clock Needs More Power”

Really Big Digital Clock Finds Use For Really Big 3D Printer

What does it take to make a really big digital clock? If [Ivan Miranda]’s creation is any gauge, it takes a really big 3D printer, an armful of Neopixel strips, and a ton of hot melt glue.

It looks like [Ivan]’s plus-size clock is mainly an exercise for his recently completed large-bed custom 3D printer, in itself a project worth checking out. But it’s a pretty ambitious project, and one that has some possibilities for enhancements. Each of the four seven-segment displays was printed separately, with a black background, translucent white for the segments, and recesses for five RGB LEDs each. The four digits and colon spacer are mated together into one display, and an ESP8266 fetches the time from a NIST server and drives the segments. What’s really interesting about [Ivan]’s projects is that he constrains himself to finishing them each in a week. That explains the copious amount of hot glue he uses, and leaves room for improvements. We’d love to see this display built into a nice walnut case with a giant red diffusing lens. Even as it stands it certainly makes a statement.

We’ve featured other outsized seven-segment displays before, but few as big as this one.

Continue reading “Really Big Digital Clock Finds Use For Really Big 3D Printer”

Sunrise Alarm Clock With Organic Twist

Most hardware hackers have a clock project or two under their belt. A pretty common modification to a generic clock is to add lights to it, and if the clock has an alarm feature, it’s not too big of a stretch to try to get those lights to simulate a sunrise for a natural, peaceful morning alarm. The problem that a lot of us run across, though, is wiring up enough LEDs with enough diffusion to make the effect work properly and actually get us out of bed without an annoying buzzer.

Luckily for all of us, [jarek319] came up with an elegant and simple solution that should revolutionize all future sunrise alarm clock builds. He found a cheap OLED display and drove it with an LM317 voltage regulator. By driving the ADJ pin on the regulator, he was able to effectively drive the OLED with a makeshift PWM signal. This allows the OLED’s brightness to be controlled. [jarek319] threw some NTP code up on an ESP12E and did a little bit of programming for the alarm, and the problem is solved.

While an OLED is pretty much the perfect solution for a sunrise alarm clock, if you have a problem sourcing one or are just looking for an excuse to use up a strip of addressable LEDs, you can build a sunrise alarm clock out of almost any other light source.

Laser Pointer Clock Makes Timekeeping A Drawn-Out Affair

Designing a unique clock to flex your technical skills can be a rewarding experience and result in an admirable showpiece for your home. [Andres Robam] saw an opportunity to make a laser-pointer clock that draws the current time onto a glow-in-the-dark sticker.

A pair of stepper motors tilt and pan the laser’s mount — designed in SolidWorks and 3D printed. There was an issue with the motor’s shaft having some slack in it — enough to affect the accuracy of the laser. [Andres] cleverly solved the issue by using a pen’s spring to generate enough tension in the system, correcting it. A NODEmcu v2 is the brains of the clock — chosen because of its built-in WiFi capacity and compatibility with the Arduino IDE — and a 5mW laser sketches the time onto the sticker.

Continue reading “Laser Pointer Clock Makes Timekeeping A Drawn-Out Affair”