Learning The Basics Of Astrophotography Editing

Astrophotography isn’t easy. Even with good equipment, simply snapping a picture of the night sky won’t produce anything particularly impressive. You’ll likely just get a black void with a few pinpricks of light for your troubles. It takes some editing magic to create stunning images of the cosmos, and luckily [Karl Perera] has a guide to help get you started.

The guide demonstrates a number of editing techniques specifically geared to bring the extremely dim lights of the stars into view, using Photoshop and additionally a free software tool called Siril specifically designed for astrophotograpy needs. The first step on an image is to “stretch” it, essentially expanding the histogram by increasing the image’s contrast. A second technique called curve adjustment performs a similar procedure for smaller parts of the image. A number of other processes are performed as well, which reduce noise, sharpen details, and make sure the image is polished.

While the guide does show some features of non-free software like Photoshop, it’s not too hard to extrapolate these tasks into free software like Gimp. It’s an excellent primer for bringing out the best of your astrophotography skills once the pictures have been captured, though. And although astrophotography itself might have a reputation as being incredibly expensive just to capture those pictures in the first place, it can be much more accessible by using this Pi-based setup as a starting point.

Continue reading “Learning The Basics Of Astrophotography Editing”

Printed Focus Control For Pro Style Cinematography

When you watch a movie and see those perfect focus switches or zooms, the chances are you’re not seeing the result of the cameraman or focus operator manually moving the lens controls. Instead, they will have been planned and programmed in advance and executed by a motor. If you take a close look at many lenses you’ll see a ring that’s more than just extra knurling, it’s a gear wheel for this purpose. Want to experiment with this technique without buying professional grade accessories? [l0u0k0e] has you covered with a 3D printable focus zoom motor accessory.

The motor behind it all is a geared stepper motor, and there are a set of printed parts to complete the model. It’s recommended to use PETG, and nylon for the gears, but it would work in PLA with a shorter life. It’s designed to work with the standard 15 mm tube you’ll find on many camera rigs, and while you can write your own Arduino sketches to control it if you wish, we’re given instructions for hooking it up to existing focus drivers. The model is on Printables, should you wish to try.

This is by no means the first focus puller we’ve seen, in fact you can even use LEGO.

Hack Aims For Polaroid, Hits Game Boy Camera Sweet Spot

There’s just some joy in an instant camera. They were never quality cameras, even in the glory days of Polaroid, but somehow the format has survived while the likes of Kodachrome have faded away. [Mellow_Labs] decided he wanted the instacam experience without the Polaroid pricing, so he made his own in the video embedded after the break.

He says “Polaroid’ but we see Game Boy.

At its core, it’s a simple project: an ESP32-CAM for the image (these were never great cameras, remember, so ESP32 is fine– and do you really get to call it an instant camera if you have to wait for a Raspberry Pi to boot up?) and a serial thermal printer for the “instant photo”part. This admittedly limits the project to black and white, and pretty low res, but B/W is artistic and Lo-Fi is hip, so this probably gives the [Mellow Labs] camera street cred with the kids, somehow. Honestly, this reminds us more of the old Gameboy Camera and its printer than anything made by Polaroid, and we are here for it.

The build video goes through the challenges [Mellow Labs] found interfacing the serial printer to the ESP32–which went surprisingly well for what looks like mostly vibe coding, though we’re not sure how much time he spent fixing the vibe code off camera–as well as a the adventure of providing a case that includes the most absurdly beefy battery we’ve ever seen on a camera. Check out the full video below.

Instant cameras are no stranger to Hackaday: this one used e-ink; this one uses film, but is made of gingerbread. In 2022 we wondered if we’d ever shake the Polaroid picture, and the answer appears to be “no” so far.

Thanks to [Mellow] for tooting his own horn by submitting this project to the tip line. We love to see what our readers get up to, so please– toot away!

Continue reading “Hack Aims For Polaroid, Hits Game Boy Camera Sweet Spot”

Thermal Monocular Brings The Heat At 10X

[Project 326] is following up on his thermal microscope with a thermal telescope or, more precisely, a thermal monocular. In fact, many of the components and lenses in this project are the same as those in the microscope, so you could cannibalize that project for this one, if you wanted.

During the microscope project, [Project 326] noted that first-surface mirrors reflect IR as well as visible light. The plan was to make a Newtonian telescope for IR instead of light. While the resulting telescope worked with visible light, the diffraction limit prevented it from working for its intended purpose.

Continue reading “Thermal Monocular Brings The Heat At 10X”

A Single-Pixel Camera Without Moving Parts Using Compressed Sensing

One of the reconstructed images, using all 4,096 matrix patterns as input, next to the original object. (Credit: okooptics, Jon Bumstead)
One of the reconstructed images, using all 4,096 matrix patterns as input, next to the original object. (Credit: okooptics, Jon Bumstead)

There’s a strange allure to single-pixel cameras due to the simultaneous simplicity and yet fascinating features that they can offer, such as no set resolution limit. That said, the typical implementations that use some kind of scanning (MEMS) mirror or similar approach suffer from various issues even when you’re photographing a perfectly stationary and static scene due to their complex mechanical nature. Yet there’s a way around this, involving a LED matrix and a single photoresistor, as covered by [Jon Bumstead] in an article with accompanying video.

As he points out, this isn’t a new concept, with research papers cited that go back many years. At the core lies the signal processing technique called compressed sensing, which is incidentally also used with computed tomography (CT) and magnetic resonance imaging (MRI) scanners. Compressed sensing enables the reconstruction of a signal from a series of samples, by using existing knowledge of the signal.

In the case of this single-pixel camera, the known information is the illumination, which is a Hadamard matrix pattern displayed on the 64 x 64 pixel LED matrix, ergo 4,096 possible patterns. A total of 4,096 samples are thus recorded, which are subsequently processed with a Matlab script. As pointed out, even 50% of the maximum possible matrices can suffice here, with appropriately chosen patterns.

While not an incredibly fast method, it is fully solid-state, can be adapted to use other wavelengths, and with some tweaking of the used components probably could cut down the sampling time required.

Continue reading “A Single-Pixel Camera Without Moving Parts Using Compressed Sensing”

Prusa Mini with endoscope nozzle cam and pip preview

Prusa Mini Nozzle Cam On The Cheap

Let me throw in a curveball—watching your 3D print fail in real-time is so much more satisfying when you have a crisp, up-close view of the nozzle drama. That’s exactly what [Mellow Labs] delivers in his latest DIY video: transforming a generic HD endoscope camera into a purpose-built nozzle cam for the Prusa Mini. The hack blends absurd simplicity with delightful nerdy precision, and comes with a full walkthrough, a printable mount, and just enough bad advice to make it interesting. It’s a must-see for any maker who enjoys solder fumes with their spaghetti monsters.

What makes this build uniquely brilliant is the repurposing of a common USB endoscope camera—a tool normally reserved for inspecting pipes or internal combustion engines. Instead, it’s now spying on molten plastic. The camera gets ripped from its aluminium tomb, upgraded with custom-salvaged LEDs (harvested straight from a dismembered bulb), then wrapped in makeshift heat-shrink and mounted on a custom PETG bracket. [Mellow Labs] even micro-solders in a custom connector just so the camera can be detached post-print. The mount is parametric, thanks to a community contribution.

This is exactly the sort of hacking to love—clever, scrappy, informative, and full of personality. For the tinkerers among us who like their camera mounts hot and their resistor math hotter, this build is a weekend well spent.

Continue reading “Prusa Mini Nozzle Cam On The Cheap”

LayerLapse Simplifies 3D Printer Time-lapse Shots

We know you’ve seen them: the time-lapses that show a 3D print coming together layer-by-layer without the extruder taking up half the frame. It takes a little extra work compared to just pointing a camera at the build plate, but it’s worth it to see your prints materialize like magic.

Usually these are done with a plugin for OctoPrint, but with all due respect to that phenomenal project, it’s a lot to get set up if you just want to take some pretty pictures. Which is why [Whopper Printing] put together the LayerLapse. This small PCB is designed to trigger your DSLR or mirrorless camera once its remotely-mounted hall effect sensor detects the presence of a magnet.

The remote hall effect sensor.

The idea is that you just need to stick a small magnet to your extruder, add a bit of extra G-code that will park it over the sensor at the end of each layer, and you’re good to go. There’s even a spare GPIO pin broken out should you want to trigger something else on each layer of your print. Admittedly we can’t think of anything else right now that would make sense, other than some other type of camera, but we’re sure some creative folks out there could put this feature to use.

Currently, [Whopper Printing] is selling the LayerLapse as a finished product, though it does sound like a kit version is in the works. There’s also instructions for building a DIY version of the hardware using your microcontroller of choice. Whether you buy or build the hardware, the firmware is available under the MIT license for your tinkering pleasure.

Being hardware hackers, we appreciate the stand-alone nature of this solution. But if you’re already controlling your printer through OctoPrint, you’re probably better off just setting up one of the available time-lapse plugins.