Use Jedi Mind Tricks To Control Your Next Drone Swarm

Controlling a single drone takes up a considerable amount of concentration and normally involves wearing silly goggles. It only gets harder if you want to control a swarm. Researchers at Skolkovo Institute of Technology decided Jedi mind tricks were the best way, and set up swarm control using hand gestures. 

We’ve seen something similar at the Intel Booth of the 2016 Makerfaire. In that demo, a single drone was controlled by hand gesture using a hacked Nintendo Power Glove. The Skoltech approach has a lot of innovation building on that concept. For one, haptics in the finger tips of the glove provide feedback from the current behavior of the drones. Through their research they found that most operators quickly learned to interpret the vibrations subconsciously.

It also increased the safety of the swarm, which is a prime factor in making these technologies usable outside of the lab. Most of us have at one point frantically typed commands into a terminal or pulled cords to keep a project from destroying itself or behaving dangerously. Having an intuitive control means that an operator can react quickly to changes in the swarm behavior.

The biggest advantage, which can be seen in the video after the break, is that the hand control eliminates much of the preprogramming of paths that is currently common in swarm robotics. With tech like this we can imagine a person quickly being trained on drone swarms and then using them to do things like construction surveys with ease. As an added bonus the researchers were nice enough to pre-submit their paper to arxiv if any readers would like to get into the specifics.

Continue reading “Use Jedi Mind Tricks To Control Your Next Drone Swarm”

Gatwick Drone Incident: Police Still Clueless

Quietly released and speedily buried by Parliamentary wrangles over Brexit is the news that Sussex Police have exhausted all lines of inquiry  into the widely publicised drone sighting reports that caused London’s Gatwick Airport to be closed for several days last December. The county’s rozzers have ruled out 96 ‘people of interest’ and combed through 129 separate reports of drone activity, but admit that they are no closer to feeling any miscreant collars. There is no mention of either their claims at the time to have found drone wreckage, their earlier admissions that sightings might have been of police drones, or even that there might have been no drone involved at all.

Regular readers will know that we have reported extensively the sorry saga of official reactions to drone incidents, because we believe that major failings in reporting and investigation will accumulate to have an adverse effect on those many people in our community who fly multi-rotors. In today’s BBC report for example there is the assertion that 109 of the drone sightings came from “‘credible witnesses’ including a pilot and airport police” which while it sounds reassuring is we believe a dangerous route to follow because it implies that the quality of evidence is less important than its source. It is crucial to understand that multi-rotors are still a technology with which the vast majority of the population are still unfamiliar, and simply because a witness is a police officer or a pilot does not make them a drone expert whose evidence is above scrutiny.

Whichever stand you take on the drone sightings at Gatwick and in other places it is clear that Sussex Police do not emerge from this smelling of roses and that their investigation has been chaotic and inept from the start. We believe that there should be a public inquiry into the whole mess, so that those embarrassing parts of it which they and other agencies are so anxious to quietly forget can be subjected to scrutiny. We do not however expect this to happen any time soon.

Keystone Kops header image: Mack Sennett Studios [Public domain].

ESPcopter: A Fully Customizable Drone

With so many capabilities for obstacle avoidance, the only natural progression for drones would be for them to be hand-controlled. For Turkish inventor [metehanemlik], even this wasn’t enough of a challenge, as he decided to create the ESP8266-Powered Mini Drone: ESPcopter, a programmable Arduino-compatible modular drone that is open to modding through expansion shields. Not only can DIY enthusiasts modify the algorithms used for obstacle avoidance, but the drone can be sized to whatever dimensions fit their needs.

The drone is almost entirely built from expansion shields, including the multi-ranger shield with four VL53L0x laser-ranging sensors on the forward, backward, right, and left directions of the drone. The website for the ESPcopter comes with an SDK that lets users easily modify the software running on the drone’s MCU as well as pinouts to better understand its hardware functionality. Impressively, it was fully funded through a 60-day crowdfunding campaign, and will be undergoing a second launch shortly, with some new and improved features.

Power comes from a 26 0mAh LiPo battery that allows for up to six minutes of flight time; includes a 3-axis gyroscope, accelerometer, and magnetometer; runs on an ESP8266-12S 32-bit MCU; fully charges within 45 minutes through a USB connection; weighs around 35 g; and is about 90 mm from motor to motor. Continue reading “ESPcopter: A Fully Customizable Drone”

Aussies Find The True Meaning Of Drone Flight

Ah, stereotypes. Once they’ve solidified it’s surprisingly hard to shake them. When non-Australians think of a generic Aussie then, the chances are that a Crocodile Dundee type of character will spring to mind — a ‘Strine-speaking outdoorsman with a beer in hand. This group of Aussies aren’t helping the case, with a video posted by Australian drone retailer UAVme and featured by ABC News where a large multirotor lifts a guy in a lawn chair, beer in hand, over a lake to do some fishing.

Antics aside, having enough capacity to lift a person is pretty impressive. The drone in question appears to be a large hexacopter frame with rotors both below and above the boom, achieving an unusual dodecacopter configuration.

Of course we’re entertained by the sight, who wouldn’t envy them a spin under a drone in the relative safety of an environment where an unscheduled landing merely means getting wet? It seems Austrailia’s Civil Aviation Safety Authority isn’t quite so happy though, as ABC reports the usual chorus of condemnation. Entertainingly though it’s unclear whether or not our plucky adventurer — named as [Sam Foreman] — has in fact broken any laws given that he’s not flown in restricted airspace, over people or habitation, or above the legal altitude.

This isn’t the first such story we’ve brought you from Down Under, back in 2016 an Aussie landed in hot water for picking up a Bunnings sausage in a bun with his drone.

Continue reading “Aussies Find The True Meaning Of Drone Flight”

Putting The Coanda Effect To Work On A Quadcopter

The Coanda effect is an aerodynamic principle regarding the way fluids tend to flow along curved surfaces. This can be used to direct a flow, and [Tom Stanton] wanted to try out its application on a quadcopter. (Video embedded below.)

The project began by firing up the 3D printer, which made experimenting with a variety of different aerodynamic forms easy. Wishing to avoid simply putting a large obstruction in the way of an otherwise efficient propeller, the experiment first used impellers to direct flow sideways, over the edge of the Coanda domes. The impellers, combined with the Coanda domes, were a factor of 5 less efficient at generating thrust compared to a standard prop setup, but [Tom] persevered.

In testing, the drone was unable to fly outside of ground effect, with its weight exceeding its maximum thrust. However, [Tom] noted that the Coanda domes helped create a cushion of air when flying in this ground effect region that was far more than experienced with a typical prop drone.

Wanting some further success, [Tom] then replaced the impellers with standard drone props. This greatly improved performance, with the drone now able to fly out of ground effect and use far less power. However, its performance was still worse than a standard drone without Coanda domes fitted. [Tom] suspects that this is due to the weight penalty most of all.

While it’s unlikely you’ll see Coanda effect drones going mainstream anytime soon, [Tom]’s project goes to show that you can perform viable aerodynamic research at home with little more than a 3D printer and a fog machine. There’s plenty more fun you can have with the Coanda effect, too. Video after the break.

Continue reading “Putting The Coanda Effect To Work On A Quadcopter”

Safety Systems For Stopping An Uncontrolled Drone Crash

We spend a lot of time here at Hackaday talking about drone incidents and today we’re looking into the hazard of operating in areas where people are present. Accidents happen, and a whether it’s a catastrophic failure or just a dead battery pack, the chance of a multi-rotor aircraft crashing down onto people below is a real and persistent hazard. For amateur fliers, operating over crowds of people is simply banned, but there are cases where professionally-piloted dones are flying near crowds of people and other safety measures need to be considered.

We saw a skier narrowly missed by a falling camera drone in 2015, and a couple weeks back there was news of a postal drone trial in Switzerland being halted after a parachute system failed. When a multirotor somehow fails while in flight it represents a multi-kilogram flying weapon widow-maker equipped with spinning blades, how does it make it to the ground in as safe a manner as possible? Does it fall in uncontrolled flight, or does it activate a failsafe technology and retain some form of control as it descends?

Continue reading “Safety Systems For Stopping An Uncontrolled Drone Crash”

Drone On Drone Warfare, With Jammers

After the alleged drone attacks on London Gatwick airport in 2018 we’ve been on the look out for effective countermeasures against these rogue drone operators. An interesting solution has been created by [Ogün Levent] in Turkey and is briefly documented on in his Dronesense page on Crowdsupply. There’s a few gaps in the write up due to non-disclosure agreements, but we might well be able to make some good guesses as to the missing content.

Not one, but two LimeSDRs are sent off into the air onboard a custom made drone to track down other drones and knock them out by jamming their signals, which is generally much safer than trying to fire air to air guided missiles at them!

The drone hardware used by [Ogün Levent] and his team is a custom-made S600 frame with T-Motor U3 motors and a 40 A speed controller, with a takeoff weight of 5 kg. An Adventech single board computer is the master controller with a Pixhawk secondary and, most importantly, a honking great big 4 W, 2.4 GHz frequency jammer with a range of 1200 meters.

The big advantage of sending out a hunter drone with countermeasures rather than trying to do it on the ground is that, being closer to the drone, the power of the jammer can be reduced, thus creating less disturbance to other RF devices in the area – the rogue drone is specifically targeted.

One of the LimeSDRs runs a GNU radio flowgraph with a specially designed block for detecting the rogue drone’s frequency modulation signature with what seems to be a machine learning classification script. The other LimeSDR runs another *secret* flowgraph and a custom script running on the SBC combines the two flowgraphs together.

So now it’s the fun part, what does the second LimeSDR do? Some of the more obvious problems with the overall concept is that the drone will jam itself and the rogue drone might already have anti-jamming capabilities installed, in which case it will just return to home. Maybe the second SDR is there to track the drone as it returns home and thereby catch the human operator? Answers/suggestions in the comments below! Video after the break. Continue reading “Drone On Drone Warfare, With Jammers”