Hackaday Links Column Banner

Hackaday Links: May 22, 2022

It looks like it’s soon to be lights out for the Mars InSight lander. In the two years that the lander has been studying the geophysics of Mars from its lonely post on Elysium Planitia, InSight’s twin solar arrays have been collecting dust, and now are so dirty that they’re only making about 500 watt-hours per sol, barely enough to run the science packages on the lander. And that’s likely to worsen as the Martian winter begins, which will put more dust in the sky and lower the angle of the Sun, reducing the sunlight that’s incident to the panels. Barring a “cleaning event” courtesy of a well-placed whirlwind, NASA plans to shut almost everything down on the lander other than the seismometer, which has already captured thousands of marsquakes, and the internal heaters needed to survive the cold Martian nights. They’re putting a brave face on it, emphasizing the continuing science and the mission’s accomplishments. But barely two years of science and a failed high-profile experiment aren’t quite what we’ve come to expect from NASA missions, especially one with an $800 million price tag.

Closer to home, it turns out there’s a reason sailing ships have always had human crews: to fix things that go wrong. That’s the lesson learned by the Mayflower Autonomous Ship as it attempted the Atlantic crossing from England to the States, when it had to divert for repairs recently. It’s not clear what the issue was, but it seems to have been a mechanical issue, as opposed to a problem with the AI piloting system. The project dashboard says that the issue has been repaired, and the AI vessel has shoved off from the Azores and is once more beating west. There’s a long stretch of ocean ahead of it now, and few options for putting in should something else go wrong. Still, it’s a cool project, and we wish them a fair journey.

Have you ever walked past a display of wall clocks at the store and wondered why someone went to the trouble of setting the time on all of them to 10:10? We’ve certainly noticed this, and always figured it had something to do with some obscure horological tradition, like using “IIII” to mark the four o’clock hour on clocks with Roman numerals rather than the more correct “IV”. But no, it turns out that 10:10 is more visually pleasing, and least on analog timepieces, because it evokes a smile on a human face. The study cited in the article had volunteers rate how pleasurable watches are when set to different times, and 10:10 won handily based on the perception that it was smiling at them. So it’s nice to know how easily manipulated we humans can be.

If there’s anything more pathetic than geriatric pop stars trying to relive their glory days to raise a little cash off a wave of nostalgia, we’re not sure what it could be. Still, plenty of acts try to do it, and many succeed, although seeing what time and the excesses of stardom have wrought can be a bit sobering. But Swedish megastars ABBA appear to have found a way to cash in on their fame gracefully, by sending digital avatars out to do their touring for them. The “ABBA-tars,” created by a 1,000-person team at Industrial Light and Magic, will appear alongside a live backing band for a residency at London’s Queen Elizabeth Olympic Park. The avatars represent Benny, Bjorn, Agnetha, and Anni-Frid as they appeared in the 1970s, and were animated thanks to motion capture suits donned while performing 40 songs. It remains to be seen how fans will buy into the concept, but we’ll say this — the Swedish septuagenarians look pretty darn good in skin-tight Spandex.

And finally, not that it has any hacking value at all, but there’s something shamefully hilarious about watching this poor little delivery bot getting absolutely wrecked by a train. It’s one of those food delivery bots that swarm over college campuses these days; how it wandered onto the railroad tracks is anyone’s guess. The bot bounced around a bit before slipping under the train’s wheels, with predictable results once the battery pack is smooshed.

One Solution, Many Problems

You might think you’re lucky when one of your problems has multiple solutions, and you get to pick and choose, but you’re even luckier when one solution has many problems! This week I stumbled on an old solution in a new place. The project was a fantastic old MIDI guitar build, the Tryndelka by [Aleksandr Goltsov]. And the old solution? Switch matrix diodes.

You see, [Aleksandr] is making an electric guitar where the strings are pulled up to a certain voltage and then make contact with metal frets. Each fret is cut into six pieces, so that the strings can be read out individually, and the microcontroller scans each string in succession to test if it’s pressed down or not. Done, right? Wrong! The problem comes when two or more strings are pressed at once — the electrical path from the string you want will travel through the closed switch on a string that you’re not scanning. The solution is a ton of diodes.

I learned this problem the hard way in wiring up a MAME cabinet, at about 3 A.M. the night before we were going to bring it to Shmoocon. We finally got the whole USB/button code working, so we played some celebratory rounds of Street Fighter. We eventually noticed that hitting one button, or even moving the joystick in a particular direction, would block some of the other buttons from working, or change their function entirely. Quick Internet search later, and we were hand soldering 64 diodes until dawn. Good times!

But the fact that switch matrices need diodes, and exactly why, is forevermore burned in my brain. It’s fun to see it pop up in all sorts of contexts, from DIY keyboards to MIDI guitars, to Charliplexing. (It’s the “D” in LED!) It’s one of the classics — a solution to many problems.

Hackaday Podcast 169: 3D Printing In Vase Mode, Measuring Nanovolts Through Mega DIY, And The Softest Pants Are Software Pants

Join Hackaday Editor-in-Chief Elliot Williams and Assignments Editor Kristina Panos as we take a tour of our top hacks from the past week. Elliot brought some fairly nerdy fare to the table this time, and Kristina pines for physical media as we discuss the demise of the iPod Touch, the last fruit-flavored mp3-playing soldier to fall.

But first, we talk about a why-didn’t-I-think-of-that 3D printing hack that leverages vase mode into something structural. We’ll take a look inside a see-through cyberdeck made from laptop parts, marvel over the minuscule voltages that can be picked up with a bit of meticulous meter design, and chew the fat about old rotary phones.

We also put in some overtime discussing a cheap fix for an expensive time card clock part, and rock out to a guitar that can use various things for its resonant cavity. Finally, Elliot questions the difference between software and firmware when it comes to hiding your dirty secrets, and Kristina bloviates about see-through electronics and music appreciation using whatever format you can afford.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments below!

Direct Download link

Continue reading “Hackaday Podcast 169: 3D Printing In Vase Mode, Measuring Nanovolts Through Mega DIY, And The Softest Pants Are Software Pants”

This Week In Security: IPhone Unpowered, Python Unsandboxed, And Wizard Spider Unmasked

As conspiracy theories go, one of the more plausible is that a cell phone could be running malicious firmware on its baseband processor, and be listening and transmitting data even when powered off. Nowadays, this sort of behavior is called a feature, at least if your phone is made by Apple, with their Find My functionality. Even with the phone off, the Bluetooth chip runs happily in a low-power state, making these features work. The problem is that this chip doesn’t do signed firmware. All it takes is root-level access to the phone’s primary OS to load a potentially malicious firmware image to the Bluetooth chip.

Researchers at TU Darmstadt in Germany demonstrated the approach, writing up a great paper on their work (PDF). There are a few really interesting possibilities this research suggests. The simplest is hijacking Apple’s Find My system to track someone with a powered down phone. The greater danger is that this could be used to keep surveillance malware on a device even through power cycles. Devices tend to be secured reasonably well against attacks from the outside network, and hardly at all from attacks originating on the chips themselves. Unfortunately, since unsigned firmware is a hardware limitation, a security update can’t do much to mitigate this, other than the normal efforts to prevent attackers compromising the OS.
Continue reading “This Week In Security: IPhone Unpowered, Python Unsandboxed, And Wizard Spider Unmasked”

The Little Big Dogs Of Invention

This is a story about two dogs I know. It is also a story of the U.S. Navy, aviation, and nuclear weapons. Sometimes it is easy to see things in dogs or other people, but hard to see those same things in ourselves. It’s a good thing that dogs can’t read (that we know of) because this is a bit of an embarrassing story for Doc. He’s a sweet good-natured dog and he’s a rather large labradoodle. He occasionally visits another usually good-natured dog, Rocky — a sheltie who is much smaller than Doc.

I say Rocky is good-natured and with people, he is. But he doesn’t care so much for other dogs. I often suspect he doesn’t realize he’s a dog and he is puzzled by how other dogs behave. You would think that when Doc comes to visit, the big dog would lord it over the little dog, right? Turns out, Doc doesn’t realize he’s way bigger than Rocky and — apparently — Rocky doesn’t realize he should be terrified of Doc. So Rocky bullies Doc to the point of embarrassment. Rocky will block him from the door, for example, and Doc will sit quaking unable to muster the courage to pass the formidable Rocky.

It makes you wonder how many times we could do something except for the fact that we “know” we can’t do it. Or we believe someone who tells us we can’t. Doc could barge right past Rocky if he wanted to and he could also put Rocky in his place. But he doesn’t realize that those things are possible.

You see this a lot in the areas of technology and innovation. Often big advances come from people who don’t know that the experts say something is impossible or they don’t believe them. Case in point: people were anxious to fly around the start of the 1900s. People had dreamed of flying since the dawn of time and it seemed like it might actually be possible. People like Alberto Santos-Dumont, the Wright brothers, Clément Ader, and Gustave Whitehead all have claimed that they were the first to fly. Others like Sir George Cayley, William Henson, Otto Lilienthal, and Octave Chanute were all experimenting with gliders and powered craft even earlier with some success.

Continue reading “The Little Big Dogs Of Invention”

Striping A Disk Drive The 1970 Way

These days, mass storage for computers is pretty simple. It either uses a rotating disk or else it is solid state. There are a few holdouts using tape, too, but compared to how much there used to be, tape is all but dead. But it wasn’t that long ago that there were many kinds of mass storage. Tapes, disks, drums, punched cards, paper tape, and even stranger things. Perhaps none were quite so strange though as the IBM 2321 Data Cell drive — something IBM internally called MARS.

What is a data cell you might ask? A data cell was a mass storage device from IBM in 1964 that could store about 400 megabytes using magnetic strips that looked something like about a foot of photographic film. The strips resided inside a drum that could rotate. When you needed a record, the drum would rotate the strip you needed to the working part and an automated process would remove the strip in question, wrap it around a read/write head and then put it back when it was done.

Continue reading “Striping A Disk Drive The 1970 Way”

Hackaday Links Column Banner

Hackaday Links: May 15, 2022

It may be blurry and blotchy, but it’s ours. The first images of the supermassive black hole at the center of the Milky Way galaxy were revealed this week, and they caused quite a stir. You may recall the first images of the supermassive black hole at the center of the M87 galaxy from a couple of years ago: spectacular images that captured exactly what all the theories said a black hole should look like, or more precisely, what the accretion disk and event horizon should look like, since black holes themselves aren’t much to look at. That black hole, dubbed M87*, is over 55 million light-years away, but is so huge and so active that it was relatively easy to image. The black hole at the center of our own galaxy, Sagittarius A*, is comparatively tiny — its event horizon would fit inside the orbit of Mercury — a much closer at only 26,000 light-years or so. But, our black hole is much less active and obscured by dust, so imaging it was far more difficult. It’s a stunning technical achievement, and the images are certainly worth checking out.

Another one from the “Why didn’t I think of that?” files — contactless haptic feedback using the mouth is now a thing. This comes from the Future Interfaces Group at Carnegie-Mellon and is intended to provide an alternative to what ends up being about the only practical haptic device for VR and AR applications — vibrations from off-balance motors. Instead, this uses an array of ultrasonic transducers positioned on a VR visor and directed at the user’s mouth. By properly driving the array, pressure waves can be directed at the lips, teeth, and tongue of the wearer, providing feedback for in-world events. The mock game demonstrated in the video below is a little creepy — not sure how many people enjoyed the feeling of cobwebs brushing against the face or the splatter of spider guts in the mouth. Still, it’s a pretty cool idea, and we’d like to see how far it can go.

Continue reading “Hackaday Links: May 15, 2022”