DisplayPort: Hacking And Examples

So far, I’ve talked about why DisplayPort is the future, introduced the basics of how to work with it on the hacker level, took apart and tamed the DisplayPort altmode, and recently, went through the eDP (embedded DisplayPort) display technology. This time, I want to give you a project library to reference, so that your hacking goes as smoothly as possible – real-world examples of open-source DisplayPort boards, a few boards I’ve worked on, part numbers, and whatever other information you might need.

Even this wonderful build is not immune from wasting power on unnecessary video conversion

Over the past few years, I’ve noticed that a non-zero amount of cyberdeck builders buy eDP screens with HDMI converter boards on Aliexpress, then connect them to SBCs using USB-C to HDMI adapters, or ignore the onboard eDP port; even this super cool Framework-based cyberdeck has done that! I get that it’s the simplest option, but I do believe that you ought to know how to improve it. The issue is that this double-conversion decreases the battery life significantly by burning two extra ASICs doing video conversion back and forth. Every hour of battery life matters in a cyberdeck, doubly so if it’s based on a low-power device already – you could easily cut your battery life in half if you’re not careful!

With these projects and references in your arsenal, my aim is that DisplayPort becomes way more comfortable for you to work with. Thankfully, there are quite a few projects to reference by now – let’s delve in.

Right out of the gate – are you looking for an SBC with DisplayPort support? The BoardDB website, a database of single-board computers, has a DisplayPort filter – click this link with the filter already enabled and browse through.

Continue reading “DisplayPort: Hacking And Examples”

Think Again: Tips On Finding And Flexing Your Creativity

Technical work — including problem-solving — is creative work. In addition, creativity is more than a vague and nebulous attribute that either is or isn’t present when it’s needed. A short article by [Anthony D. Fredericks] gives some practical and useful tips on energizing and exercising one’s creativity.

Why would creative thinking be meaningful to a technical person? The author shares an anonymous observation that as children we’re taught to stay inside the lines, while as adults we are often expected to think outside the box. Certainly when it comes to technical tasks, our focus is more on logical thinking. But problem solving benefits as much from creative thinking as it does from more logical approaches.

How can one cultivate creative thinking? The main idea is that creativity is best flexed and exercised by actively looking for connections and similarities between highly dissimilar elements, rather than focusing on their differences. Some thought exercises are provided to help with this process. Like with any exercise, the more one does it, the better one becomes.

Practicing more creative thinking can help jolt new ideas and approaches to a tough problem, so give it a shot. It’s also worth keeping in mind that we all need a feeling of progress, especially during extended times of applying effort to something, so do yourself a favor and give yourself an occasional win.

Supercon 2023: Building The Ultimate Apple IIe, Decades Later

The Apple II was launched in 1977, a full 47 years ago. The Apple IIe came out six years later, with a higher level of integration and a raft of new useful features. Apple eventually ended production of the whole Apple II line in 1993, but that wasn’t the end. People like [James Lewis] are still riffing on the platform to this day. Even better, he came to Supercon 2023 to tell us all about his efforts!

[James]’s talk covers the construction of the Mega IIe, a portable machine of his own design. As the name suggests, the project was based on the Mega II chip, an ASIC for which he had little documentation. He wasn’t about to let a little detail like that stop him, though.

The journey of building the Mega IIe wasn’t supposed to be long or arduous; the initial plan was to “just wire this chip up” as [James] puts it. Things are rarely so simple, but he persevered nonetheless—and learned all about the Apple II architecture along the way.

Continue reading “Supercon 2023: Building The Ultimate Apple IIe, Decades Later”

Displays We Love Hacking: LVDS And EDP

There are times when tiny displays no longer cut it. Whether you want to build a tablet or reuse some laptop displays, you will eventually deal with LVDS and eDP displays. To be more exact, these are displays that want you to use either LVDS or eDP signaling to send a picture.

Of the two, LVDS is the older standard for connecting displays, and eDP is the newer one. In fact, eDP has mostly replaced LVDS for things like laptop and tablet displays. Nevertheless, you will still encounter both of these in the wild, so let’s start with LVDS.

The name “LVDS” actually comes from the LVDS signaling standard (Low-Voltage Differential Signaling), which is a fairly generic data transfer standard over differential pairs, just like RS485. Using LVDS signaling for embedded display purposes is covered by a separate standard called FPD-Link, and when people say “LVDS”, what they’re actually talking about is FPD-Link. In this article, I will also use LVDS while actually talking about FPD-Link. Barely anyone uses FPD-Link except some datasheets, and I’ll use “LVDS” because that’s what people actually use. It’s just that you deserve to know the distinction so that you’re not confused when someone mentions LVDS when talking about, say, industrial machinery.

Both LVDS and eDP run at pretty high frequencies – they’re commonly used for color displays with pretty large resolutions, so speed can no longer be a constraint. eDP, as a successor technology, is a fair bit more capable, but LVDS doesn’t pull punches either – if you want to make a 1024 x 768 color LCD panel work, you will use LVDS, sometimes parallel RGB – at this point, SPI just won’t cut it. There’s a lot of overlap – and that’s because LVDS is basically parallel RGB, but serialized and put onto diffpairs. Let me show you how that happened, and why it’s cool.

Continue reading “Displays We Love Hacking: LVDS And EDP”

Supercon 2023: MakeItHackin Automates The Tindie Workflow

Selling your hardware hacks is a great way to multiply your project’s impact, get your creations into others’ hands, and contribute to your hacking-related budget while at it. If you’re good at it, your store begins to grow. From receiving a couple orders a year, to getting one almost every day – if you don’t optimize the process of mailing orders out, it might just start taking a toll on you.

That is not to say that you should worry – it’s merely a matter of optimization, and, now you have a veritable resource to refer to. At Supercon 2023, [MakeItHackin]/[Andrew] has graced us with his extensive experience scaling up your sales and making your shipping process as seamless as it could be. His experience is multifaceted, and he’s working with entire four platforms – Tindie, Lectronz, Etsy and Shopify, which makes his talk all that more valuable.

[MakeItHackin] tells us how he started out selling hardware, how his stores grew, and what pushed him to automate the shipping process to a formidable extent. Not just that – he’s developed a codebase for making the shipping experience as smooth as possible, and he’s sharing it all with us.

Continue reading “Supercon 2023: MakeItHackin Automates The Tindie Workflow”

A diagram from the article, showing the router being used in a car for streaming media to multiple portable devices at once

A Portable DLNA Server Hack Helps You Tame OpenWRT

A good amount of hacks can be done with off-the-shelf hardware – what’s more, it’s usually available all over the world, which means your hacks are easier to build for others, too. Say, you’ve built something around a commonly available portable router, through the magic of open-source software. How do you make the fruits of your labour easy to install for your friends and blog readers? Well, you might want to learn a thing or two from [Albert], who shows us a portable DLNA server built around a GL-MT300N-V2 pocket router.

[Albert]’s blog post is a tutorial on setting it up, with a pre-compiled binary image you can flash onto your router. Flash it, prepare a flash drive with your media files, connect to the WiFi network created by the router, run the VLC player app, and your media library is with you wherever you go.

Now, a binary image is good, but are you wondering how it was made, and how you could achieve similar levels of user-friendliness in your project? Of course, here’s the GitHub repository with OpenWRT configuration files used to build this image, and build instructions are right there in the README. If you ever needed a reference on how to make commonly available OpenWRT devices do your bidding automagically, this is it.

This is an elegant solution to build an portable DLNA server that’s always with you on long rides, and, think of it, it handily beats a typical commercialized alternative, at a lower cost. Want software upgrades? Minor improvements and fixes? Security patches? Everything is under your control, and thanks to the open-source nature of this project, you have a template to follow. There won’t always be a perfectly suited piece of hardware on the market, of course, as this elegant dual-drive Pi-based NAS build will attest.

Starlink terminal being injected with 12V from an external PSU

Bypass PoE And Power Your Starlink Terminal Directly

Sometimes, you will want to power a device in a way it wasn’t designed for, and you might find that the device in question is way too tailored to the original power source. Today, [Oleg Kutkov] is here to give us a master class on excising unnecessary power conversion out of your devices, with the Starlink terminal as an example. This device can only be officially powered from 48V PoE, but can technically work from about 12V – and, turns out, many people want to mount a Starlink terminal to their cars.

[Oleg] shows us the power circuit of the Starlink terminal, explaining which component is responsible for what, and gives us a block diagram. Then, he shows you the 12V rail that all internal components actually draw power from, and where to feed power into it. Plus, he warns you about possible caveats, like having to disable the builtin 12V regulator to prevent it from backfeeding-induced damage. If you’re looking to modify a similar device, this tutorial gives you heaps of insight on what you might need on your foray.

Thinking to modify your own Starlink terminal, perhaps, and wondering about the power consumption? [Oleg] has current consumption graphs for you, collected with a data logger for Uni-T UT800 of his own design, providing detailed figures on just how much energy you ought to supply to power the terminal from 12V, and where to (not) get it. After all, even a seemingly suitable power supply might not do.