RasPi LED Panel Library Is Nyan-tastic

Quick–in a pinch, let’s have ourselves a giant RGB LED Matrix! As marvelous as it sounds, it’s pretty easy to forget that there’s a battle to be won against picking the right parts, debugging drivers, and sorting out our spaghetti wiring. Rest assured, [Hzeller] has done all of the heavy-lifting for us with a Raspberry Pi RGB LED Matrix Implementation that scales to multiple panels and runs on any Pi model to date!

Offering 24-bit color at about 100 Hz for up to a grand total of 36 panels, [Hzeller’s] library is no slouch. The library enables customization of your panel arrangements, and a separate project (also [Hzeller’s] handiwork) makes this setup compatible with the pixel-pusher protocol as a network device.

It’s certainly true that many of us have a thing for these displays, so you might ask: “have we seen this before? What’s all the fuss?” Like the others, the final product is a sight to behold, but [hzeller] and his implementation stands strong because of his phenomenal response to answering the question: how? In fact, almost more impressive is his comprehensive online documentation. Inside, [hzeller] details various hardware configurations for a custom number of panels or a particular flavor of Pi that drives them. He also provides references for pinout quirks and provides out-of-the-box software demos to ensure that anyone can bring this project to life. If a poorly-written or non-existent READMEs have made you shy away from building on an open-source project, fear not. From pinout quirks and out-of-the-box software demos, [hzeller] has covered all the bases and given us a project that folks of all levels of hacking.

Perhaps the best part of this project is the span of the audience that can take something away from it. If you’re a seasoned Linux junkie, dive into the source code to get a good feel of mechanics of how [hzeller] pushes this project onto a single core in a Raspi-2 configuration. If you’re new to digital electronics, let this project be your moment to pick up a Pi, a panel (or four), and run, knowing that [hzeller’s] README is the only tome you’ll need to light up the night.

We had the honor of soaking up some Nyan-Cat rainbows with a live demo at this year’s SuperCon.

Continue reading “RasPi LED Panel Library Is Nyan-tastic”

This VU Meter Is Built Into The Speaker

Depending on the music you’re listening to, watching a VU meter bounce to the music is always a good time. So why not integrate the VU meter right into the audio source? That’s what [Matikas] did, and it’s pretty fantastic.

He started with a pair of speakers he had and picked up some NeoPixel LED strips. Carefully wrapping the LED strips around the inside circumference of each speaker, the LEDs fit behind the speaker grills, giving it a cool effect when they’re on.

To control the LEDs, he’s using an Arduino Uno (Atmega328p) which measures the audio level in order to modulate the LED output. A bit of software later (shared on GitHub if you’re interested!) and the VU meters were ready for action — check it out!

Continue reading “This VU Meter Is Built Into The Speaker”

90,000 Lumen Flashlight Is Illuminating, Impractical And Blindingly Good

It may be better to light a single candle than to curse the darkness, but that was before [RCTestflight] came up with this: a 1000W LED flashlight that outputs about 90,000 lumens of light. That’s a lot: the best pocket LED flashlights output about 700 lumens.

[RCTestflight] built this monstrosity using ten 100-Watt LEDs, running off two RC car batteries. Each of the LEDs is connected to a sizable voltage converter and a very large heatsink that holds all of them in place. He says he gets about 8 minutes of light out of this thing, and that the heatsink gets warm after a minute or two of use. We’re not surprised: LEDs are more efficient than most other devices at converting electrical energy to light, but some always gets lost as heat.

Check out the video after the break. It’s very impressive, but this thing isn’t particularly practical as a handheld. It is big, heavy and is visible for miles. If you really want to light something up it does a great job (for a short period of time) due in part to the inclusion of a glass lens for each of the LEDs. This effectively focuses the beam on a properly distributed area. We wonder what would happen if all the beams were focused on one point? As long as you don’t cross the streams

We have covered a few more practical builds using similar LEDs, but this thing does have a certain outrageous charm, and could be useful for high-speed video, where the more light, the better.

Continue reading “90,000 Lumen Flashlight Is Illuminating, Impractical And Blindingly Good”

The Ommatid Is An Awesome “Thing”

[Jonathan Foote] made a really cool device: the Ommatid spherical display and controller. Part woodworking craft project, part art, and part tremendous hack, the Ommatid is something that we don’t really have a name for. But you can watch it in action, running demo code, in a video below the break.

The sphere design started out with a “20-sided regular polyhedron” with which D&D players should be familiar, and then divided each triangular face into four more triangles. An 80-sided die? Almost. One triangle’s worth was sacrificed for the part that mounts to the base.

Each facet contains an RGB LED and an IR sensor so that it can tell when a hand is nearby. All of this input and output is run through a Raspberry Pi, so both the sensing and display interactions are easily modified. [Jonathan] runs us through the electronics, programming, and interactivity in a separate Instructable. We really like [Jonathan]’s idea of turning this device into an OSC controller / display.

Continue reading “The Ommatid Is An Awesome “Thing””

The Easiest Infinity Mirror Build

Infinity mirrors are awesome. They’re great conversation pieces, and even more fun to stare into forever and ever and ever and ever… They can be tricky to build, but there’s actually a really easy way to do it, and [William] shows us how.

The way a infinity mirror works is it uses a one-way mirror with lights around the perimeter in front of a regular mirror. The majority of the light gets bounced back and forth between the two mirrored surfaces, and because you can see into the one-way mirror, you get that really cool infinity effect.

Now if you went out and bought a one way mirror, built the frame, and put it all together — it’d be a lot of work. But there’s an easier way to do it on the cheap. Mirrored car tint foil. Although it’s illegal on your car in most states, it’s still pretty easy to find.  Continue reading “The Easiest Infinity Mirror Build”

Akiba’s Awesome Lighting Tutorial

[Akiba] over at FreakLabs just put up a detailed tutorial outlining how to control and sequence lighting wirelessly using an Arduino and Vixen lighting sequencer software.

For those that don’t know [Akiba], he’s the guy behind Wrecking Crew Orchestra (TRON Dance) and their EL wire costumes. [Akiba] hacks on his projects at Hacker farm out in rural Japan.

board1

In the tutorial, he sets up a simple 6 LED circuit on a Fredboard (an Arduino compatible board with integrated breadboard). [Akiba] then describes configuring the Vixen sequencer software to control the Arduino, providing simple example code to decode the Vixen serial protocol. Finally [Akiba] shows how to use the ChibiArduino protocol stack to build a wireless illumination system.

[Akiba] has used these tools in many stage performances including with the Wrecking Crew Orchestra (shown above) and the world number 1 flair bartending crew, UPT.

This tutorial is particularly awesome, as it includes both step-by-step videos and a text reference. The videos give a great overview of the process, while the text provides a handy reference to refer to as you hack on your own illumination projects.

Thanks for the writeup [Akiba]! With Christmas just round the corner we hope to see readers using these techniques in their own festive illuminations soon!

Continue reading “Akiba’s Awesome Lighting Tutorial”

Full-Color Edge-Lit Laser Cut Acrylic

Edge-lit art has been around for a very long time, and most people have probably come across it in a gift shop somewhere. All it takes is a pane of transparent material (usually an acrylic sheet) with the artwork etched into the surface. Shine a light into the sheet from the edge, and refraction takes over to light up the artwork. However, this technique is almost always limited to a single pane, and therefore a single color. [haqnmaq] wanted to take this idea and make it full-color, and has written up a great Instructables tutorial on how to accomplish this.

If you want to make something like this yourself, the only thing you really need is a laser cutter and some basic electronics equipment. The process itself is so straightforward that it’s surprising that it isn’t more common. You start by taking a photo of your choice and use an image editor to break it up into three photos, one for red, one for green, and one for blue. Each of those photos is then etched into an acrylic pane with a laser cutter. When the panes are positioned in front of each other and edge-lit with their respective LEDs, a full-color image comes to life.

This isn’t the first edge-lit artwork project we’ve featured, but it definitely has the highest fidelity. Because [haqnmaq’s] technique uses three colors, you can use his tutorial to reproduce any photo you like. You could even take this a step further and create animated photos by adding more panes and lighting them up in the correct sequence!