An Improved Bubble Display With RGB LEDs

Making a bubble display is quite an undertaking, but [Jay] takes advantage of iterative design to construct this impressive (and at 60 tubes, massive) bubble display. The display functions by dispensing bubbles to serve as illuminated pixels in each tube as they rise through the fluid. His build log steps through the display’s construction with a keen attention to detail and above all, patience.

Rather than diving right in and slapping some tubes together, [Jay] took the time to research other bubble display projects, including one we featured a few years back that grew out of yet another HackaDay article. His prototypes started off small to test potential features: whether to use water or glycerin, timing for the air pumps and bubble size, and several others. [Jay] even filled the log with videos of every test, so you can watch the problems and solutions unfold at each step.

The finished display boasts sixty 30″ tall tubes, making it 64″ wide. [Jay] also installed RGB LEDs at every edge where the tubes meet to better distribute the light. You can watch one of the many videos of the display at work below.

Continue reading “An Improved Bubble Display With RGB LEDs”

A PC Rig That Belongs On The Wall Of An Art Museum

When Overclock.net user [Show4Pro] decided to upgrade his “old dusty rig”, he eschewed the conventional PC form factor and instead built an incredibly sexy custom wall-mounted case.

The six sticks of RAM, quad HDD/SSDs, and dual Radeon HD7970s are enough to make all but the most hard core gamer blush, but that was only the beginning here.  Using a Dremel tool, Show4Pro cut the frame from a piece of hardboard and coated it with a mock-carbon fiber vinyl sheet.  This backdrop acts to both hide the (many) cables and provide structural support to the components.  Custom light guides cut from an acrylic sheet are back lit with LEDs and serve as a border for each of the components.

Laying all of the boards flat on the frame required the use of PCIe risers to move the video cards away from the mother board.  Long PCIe connectors are very susceptible to EMI though, and Show4Pro ran into a few stability problems that he eventually had to resolve with some high-end shielded risers.

Besides that one minor hiccough, the project went off without a hitch and it looks like his 100+ hours of work have really paid off.

Via Reddit.

Homemade LED Helmet

LEDHelmet

We’ve all seen Daft Punk helmet builds, but [George’s] project is a homemade LED helmet that takes no shortcuts and packs the visor full of hundreds of individual lights. He started with a prototype that uses a PIC 18F4580 microcontroller connected to a MAX7221 LED driver, which gave him control over some dot matrix displays to test the wiring and sample script. He then used this prototype setup to develop a scrolling text function.

With testing complete, [George] wired hundreds of LEDs into 8×8 block sections, using a cardboard jig to keep everything straight. He could have stopped there, but [George] took the build further, adding an LCD display and a 7-segment clock module to the inside of the helmet, in view of the wearer. The clock displays the helmet’s current beats per minute rate, while the LCD shows the content being displayed (pattern, text / Pacman, stripes). It’s possible to see out between the bottom of the display and the chin of the helmet. If you need better visibility we’d recommend a bike helmet matrix that isn’t as dense.

You can watch a video of the helmet running different patterns below. (Warning: music). When you’re done with that, why not LED all the things: from Infinity Mirrors to LED Sneakers.

Continue reading “Homemade LED Helmet”

RGB Infinity Mirror

If you’ve been waiting for a more detailed guide before you set off to work on your own Infinity Mirror, [Ben]’s write-up is perhaps the most approachable one you will find. This build uses a set of four potentiometers to control an analog RGB LED strip (these lights are not individually addressable: but that makes coding simpler). [Ben] powers everything from a 12V 5A DC adapter, which is more than enough to run the 12V RGB strip along with the Arduino.

The mirror has two different ‘modes:’ individual channel color control and color-fade. In the first mode, three pots drive the RGB channels respectively. The color-fade mode has a mind of its own, sliding between all possible colors; you can spin the fourth potentiometer to control the speed of the transition.

The video below better illustrates the different modes. We definitely recommend [Ben’s] excellent guide as an ideal first project for anyone who has yet to take the plunge beyond simple microcontroller exercises. Check out Freeside Atlanta’s Infinity Mirror prototype for more inspiration.

Continue reading “RGB Infinity Mirror”

As Millenials Grow Up Do They Demand Cooler LED Sneakers?

flora-LED-sneakers

We’re hoping that whomever came up with the idea of integrating LEDs into children’s shoes is kicking back on a beach somewhere living off the residuals of the idea. We see those things everywhere. Now the real question is, if you grew up with LEDs in your shoes do you expect cooler light up kicks as you age? [Becky Stern] must think so and that’s why she’s showing off Adafruit’s addressable LED strip shoe project called Firewalker.

This is prototype rather than product, so you can see the Arduino compatible Flora board on the ankle of the lit shoe above. There’s also a battery pack hitching a ride on the laces. But those worried about that fashion faux pas can work on a more finished driver that straps to your calf, or can be integrated in the insole.

Lighting patterns are set off by Velostat, a pressure-sensitive conductive sheet that goes in the heel of the insole. The Flora board measures the resistance, triggering a light show (embedded below) when it drops. Now we just need someone to integrate a power generator based on your movement.

Continue reading “As Millenials Grow Up Do They Demand Cooler LED Sneakers?”

Laser Cut Arc Reactor Replica

laser-cut-arc-reactor

We’re starting to become a repository for Arc Reactor replica projects. The one shown above uses mostly laser cut components. We missed it back in May when [Valentin Ameres] tipped us off the first time. But he sent it in again after seeing the 3D printed version earlier this month.

Our biggest gripe is that we don’t have our own laser cutter to try this out on. Everything has been cut from 2mm thick acrylic. The black, silver, and copper colored components were painted to achieve this look. Many of the clear parts also had a dot matrix etched into them to help with light diffusion.

Basic assembly just required the parts be glued together. The finishing touches include wire-wrapping the slots of the outer ring and adding LEDs and current limiting resistors.

The plans are not freely available, but the 3D printed version linked above doubles as a 123D tutorial. That should help get you up to speed designing your own if you are lucky enough to have time on laser cutter.

Continue reading “Laser Cut Arc Reactor Replica”

Reaction Time Challenge

reactionChallenge

We’re not sure where [Bill Porter] finds all of his free time, but we’re glad he’s put it to such good use by building an exhibit piece for the local science museum: Reaction Time Challenge. It’s likely that we were all inspired to love science as kids in a museum like this, and [Bill’s] contribution is already fascinating its young audience. The challenge lets two participants test how fast they can smack a big red button after a randomly-generated countdown. The time taken for the players to react is translated into the RGB LED strips, measuring how fast they managed to hit the button.

Builds like this one need to clearly communicate how they should be used; you don’t want confused children bamming around on your cabinet. First, [Bill] guts the dim LEDs inside the big plastic buttons and replaces them with some brighter ones. To keep the connections clean, he takes the cannibalized ends of an Ethernet cable and hooks the speaker and buttons to an Ethernet jack. The jack sits snugly in a project box where it connects to an Arduino. Two RGB LED strips run from the opposite end of the box, daisy-chaining from the bottom of the cabinet to the top, then back down again. See it all come together in the video after the break.

[Bill’s] museum must be pretty lucky; he resurrected the “Freeze Frame” exhibit for them just over a year ago and has done a bunch of other projects for them over the years.

Continue reading “Reaction Time Challenge”