Building A High-Capacity Linear Servo Actuator

Linear actuators are useful things, moving things in straight lines rather than annoying circles like so many motors. [Retsetman] recently built a linear servo actuator of his own design with accurate positional control.

The design relies on a carriage that moves along a threaded rod, perhaps the most rudimentary design of linear actuator. A large brushed DC motor is used to turn the threaded rod through a 3D-printed 9:1 herringbone geartrain, shifting the actuator back and forth. End stop switches are used to disengage the motor to avoid damage to the mechanism. Feedback is via a ten-turn potentiometer driven off the output geartrain to match the range of the actuator to the rotational range of the pot.

The final build has a stroke of approximately 100 mm, and can lift and hold a 15 kg weight with ease. In a pull test, the actuator failed at a load just shy of 100 kg. If you’re looking for something smaller, though, you can try building a linear actuator out of old DVD drive parts instead. Video after the break.

Continue reading “Building A High-Capacity Linear Servo Actuator”

Infinity Mirror Hypercrystal Is As Beautiful As It Sounds

Sometimes, we feature projects that are full to the brim with advanced functionality or solve some tricky little problem for the end-user. Other times, we feature stuff that just looks super damn cool, and the Infinity Mirror Hypercrystal is firmly in that latter category.

This show-stopping build comes to us from [Inanna Malick], who put together the design using algorithmic and generative art techniques she’s been working on for years. The form is a non-symmetrical, non-platonic solid, with each of its eight faces laser cut from mirrored acrylic. Plywood sections are used to hold together the structure.

Initially, the build was illuminated from within by white LEDs, but [Inanna] wasn’t satisfied with the look, which was too rooted in regular human technology. They were instead covered up with transparent dichroic tape, creating the lurid shifting colors that do so much to add to the mystery of the legendary Hypercrystal.

The result is an infinity mirror piece that looks more advanced, more alien, and more luridly enticing than most we’ve ever seen. The dichroic shift placed on the LEDs goes a long way to elevating this sculpture to new aesthetic heights. Video after the break.

Continue reading “Infinity Mirror Hypercrystal Is As Beautiful As It Sounds”

Anti-Curl Sandpaper Storage Is Impressive

Maybe it’s the humidity, maybe it’s the cold weather. Something is making [Laura Kampf]’s nice fabric-backed sandpaper curl up into scrolls the second it comes out of the package. So you can understand why she urgently wanted to make a storage system that would be easy to flip through like a record bin, but also provide enough pressure to keep the papers flat.

Although [Laura] didn’t know what exactly the end result would be, she got started on it anyway — that’s a great way to get more projects off the drawing board and past the finish line. It worked out, because she got a great idea while building the box and using nice cam clamps to hold the finger joints together as the glue dried. Since she already had a bunch of these cam clamps in different lengths lying around, why not use a couple of them for this?

[Laura] has two major classifications of sandpaper — paper-backed and fabric-backed — and built them separate boxen using two clamps for each box. She joined the pins with a DIY handle in order to move the cams in unison, so all she has to do is pull out to flip through the papers, and push the handle back and down to re-pressurize the stack for storage. Be sure to check out the build and demo video after the break.

While DIY clamps are often wood and metal affairs, it’s good to have 3D printing in your corner.

Continue reading “Anti-Curl Sandpaper Storage Is Impressive”

A handheld printer printing "CHI 2022 and a capacitor symbol

Print-a-Sketch Turns Any Surface Into A Printed Circuit Board

Although powerful design software and cheap manufacturing services have made rolling your own PCBs easier than ever, there are some situations where a piece of FR-4 just doesn’t cut it: think art projects with hidden LEDs or biomedical applications that need to attach to the human body. For such occasions, [Narjes Pourjafarian] and her team at Saarland University in Germany developed Print-a-Sketch: a handheld device that lets you print electric circuits on almost any surface using conductive ink.  Also check out their academic paper (PDF).

The heart of the device is a piezoelectric print head, as used in some types of inkjet printer. It dispenses tiny droplets of silver nanoparticle ink, which is conductive enough to make useful electronic circuits by simply printing a schematic. Lines can be drawn to connect components, while customized footprints can hold LEDs, capacitors or even integrated circuits.

As demonstrated in the video embedded below, the Print-a-Sketch can be used in various different modes. In freehand mode, you can draw whatever you like just by moving the device around. But it also has several assisted sketching modes, where it can straighten out wobbly lines, draw multiple lines in parallel, or even print complete predefined shapes. Especially satisfying is the way it can draw resistors by literally printing zig-zagging lines.

Thanks to an optical motion sensor, similar to the ones used in gaming mice, the device knows at all times where it is and how fast it’s going. That enables the control circuitry to compensate for unsteady movement; the authors claim a printing precision of less than 0.5 mm. In addition, an RGB camera is used to detect the material underneath and adjust the amount of ink dispensed, depending on how absorbent the surface is: rough paper needs more ink to obtain a conductive trace than a ceramic tile.

The number of potential applications seems limitless: how about a yoga mat with integrated touch buttons to control the video player on your iPad? A piece of kinesiology tape with an integrated stretch sensor to measure the exact motion of your arm? Or a floor tile with a printed moisture sensor? All of these are demonstrated by the team, but we’re sure our readers can come up with many more ideas.

Of course, drawing circuits using conductive ink is not a new idea: previous projects either relied on drawing the entire thing by hand, or used traditional inkjet printers. But the Print-a-Sketch’s sophisticated hardware and software really put it in a league of its own. And since the entire design is open-source, you can simply build one and bring your ideas to life.

Continue reading “Print-a-Sketch Turns Any Surface Into A Printed Circuit Board”

Servo Larson scanner

No LEDs Required For This Servo-Controlled Larson Scanner

All things considered, it’s pretty easy to get one LED is a strip to light up sequentially, and have it bounce back and forth. Turning that simple animation into a real Larson scanner, with smooth transitions and controlled fade-out, is another thing entirely. And forgetting the LEDs altogether and making a servo-operated Larson scanner is — well, let’s just call it an interesting lesson in hardware abstraction.

The Larson scanner, named after famed TV producer Glen A. Larson for his penchant for incorporating it into shows like Battlestar Galactica and Knight Rider, is actually hard to execute in hardware thanks to the fading tail that follows the lead pixel as it dances back and forth across the display. [Eric Gunnerson] decided to make this and other animation effects easier to achieve with Fade, a custom framework for LED animations that runs on an ESP32.

LED animations are fine, but what about servos? Could Fade be modified to support them? This turned out to be a fairly easy mod thanks to Fade’s architecture and [Eric]’s existing support for non-addressable LEDs via PWM signals. And it was even possible to support more than the 16 PWM channels on an ESP32by adding a UDP connection that puts multiple ESP32s under the control of a central microcontroller.

The video below shows [Eric]’s demo of servo support, with an eight-channel electromechanical Larson scanner. Each “pixel” is a painted ping pong ball swinging back and forth on a hobby servo, and the whole thing sounds just about as awful as you’d expect it to. If you squint just right, the effect looks pretty convincing, but that’s hardly the point. The real story here is [Eric]’s thoughtful architecture, which made the mods easier than starting from scratch.

Continue reading “No LEDs Required For This Servo-Controlled Larson Scanner”

Sticker Brings The Heat

[Carl] is always looking at making heater plates for PCB reflow and other applications. In his latest video, he shows how he is using thin flexible PCBs with adhesive backs as stickers that get hot. You can find gerber files and design files on GitHub.

You might think that this is a pretty simple thing to do with a flex PCB, but it turns out while the PCB might be flexible, the traces aren’t and so the typical long traces you see in a heater won’t allow the sticker to bend, which is a problem if you want to wrap it around, say, a coffee mug.

Continue reading “Sticker Brings The Heat”

Epoxy Resin Night Light Is An Amazing Ocean-Themed Build

We’ve all seen those “river” tables where a lovely old piece of tree is filled with some blue resin to create a water-like aesthetic. This project from [smartyleowl] takes that basic idea, but pushes it further, and the result is a beautiful build that is as much a diorama as it is a simple lamp.

First up, an appropriate rough piece of unprepared wood is chosen to create a cliff for the underwater scene. Speckles of UV-reactive blue powder are scattered on to the wood and some little plastic coral and marine plants are stuck down as well. A mold is then constructed around the wood using acrylic. Small whale and diver figurines are dangled in place, and blue resin poured in to complete the underwater scene. Once the resin has hardened, it’s polished to a clear sheen and its edges are nicely beveled. It’s then placed on a illuminated base which lights the scene from below, giving it a somewhat ethereal underwater quality.

It’s not a complicated project by any means, but it’s a great example of the beautiful things one can create with the creative application of colored resin. Producing a lamp that looks this good obviously takes some skill, of course – getting a bubble-free resin pour and a nice shiny finish on the wood isn’t easy. However, there’s no reason you can’t start learning today! Video after the break.

Continue reading “Epoxy Resin Night Light Is An Amazing Ocean-Themed Build”