Suggested Schematic Standards

We often think that if a piece of software had the level of documentation you usually see for hardware, you wouldn’t think much of it. Sure, there are exceptions. Some hardware is beautifully documented, and poorly documented software is everywhere. [Graham Sutherland’s] been reviewing schematics and put together some notes on what makes a clean schematic.

Like coding standards, some of these are a bit subjective, but we thought it was all good advice. Of course, we’ve also violated some of them when we are in a hurry to get to a simulation.

Continue reading “Suggested Schematic Standards”

2025 One Hertz Challenge: Educational Tool Becomes 10 Stopwatches

Around the globe, some classrooms are using fancy digital handheld devices to let people answer questions. One such example of this hardware is the Smart Response PE. These devices are largely useless outside the classroom, so [Ray Burne] decided to hack one for our 2025 One Hertz Challenge.

The Smart Response PE device is similar in shape and size to an old-school candybar cellphone. It runs on a Texas Instruments CC2533 microcontroller, which drives a simple black-and-white LCD. User interface is via a numeric keypad and a few extra control buttons on the front panel. Thanks to Github user [serisman], there are readily available development tools for this hardware. [Ray] notes it provides a straightforward Arduino-like programming experience.

[Ray] decided to modify the hardware to act as a stopwatch. But not just one stopwatch—ten stopwatches at once! Pressing a number from 0 to 9 will activate that given timer, and it will start ticking up on the LCD screen. One can pause the screen updates to get a temporary laptime reading by pressing the enter key. Meanwhile, pressing the Home button will reset the screen and all timers at once. [Ray] also explains on the project page how to add a real power switch to the device, and how to modify the programming pins for easy access.

It’s a fun build, and one that could prove useful if you regularly find yourself having to time ten of something at once. Maybe eggs? In any case, it’s certainly easier than juggling ten separate stopwatches at once! Meanwhile, if you’re hacking your own obscure hardware finds, don’t hesitate to notify the tipsline!

Digital Etch-A-Sketch Also Plays Snake

The Etch-A-Sketch has been a popular toy for decades. It can be fun to draw on, but you have to get things right the first time, because there’s no undo button. [Tekavou] decided to recreate this popular toy in digital form instead to give it more capabilities. 

The build relies on an Inkplate e-paper screen as a display, which is probably as close you can get in appearance to the aluminium dust and glass screen used in an Etch-a-Sketch. The display is hooked up to an ESP32 microcontroller, which is charged with reading inputs from a pair of rotary encoders. In standard drawing mode, it emulates the behavior of an Etch-A-Sketch, with the ESP32 drawing to the e-paper display as the user turns the encoders to move the cursor. However, it has a magical “undo” feature, where pressing the encoder undoes the last movement, allowing you to craft complex creations without having to get every move perfect on your first attempt. As a fun aside, [Tekavou] also included a fun Snake game. More specifically, it’s inspired by NIBBLES.BAS, a demo program included with Microsoft QBasic back in the day.

We’ve seen all kinds of Etch-A-Sketch builds around these parts, including this impressive roboticized version. Video after the break.

Continue reading “Digital Etch-A-Sketch Also Plays Snake”

Physical Aimbot Shoots For Success In Valorant

Modern competitive games have a great deal of anti-cheat software working to make sure you can’t hack the games to get a competitive advantage. [Kamal Carter] decided to work around this by building a physical aimbot for popular FPS Valorant.

The concept is straightforward enough. [Kamal] decided to hardmount an optical mouse to a frame, while moving a mousepad around beneath it with an off-the-shelf Cartesian CNC platform, but modified to be driven by DC motors for quick response. This gave him direct control over the cursor position which is largely undistinguishable from a human being moving the mouse. Clicking the mouse is achieved with a relay. As for detecting enemies and aiming at them, [Kamal] used an object detection system called YOLO. He manually trained the classifier to detect typical Valorant enemies and determine their position on the screen. The motors are then driven to guide the aim point towards the enemy, and the fire command is then given.

The system has some limitations—it’s really only capable of completing the shooting range challenges in Valorant. The vision model isn’t trained on the full range of player characters in Valorant, and it would prove difficult to use such a system in a competitive match. Still, it’s a neat way to demonstrate how games can be roboticized and beaten outside of just the software realm. Video after the break. Continue reading “Physical Aimbot Shoots For Success In Valorant”

2025 One Hertz Challenge: Estimating Pi With An Arduino Nano R4

Humanity pretty much has Pi figured out at this point. We’ve calculated it many times over and are confident about what it is down to many, many decimal places. However, if you fancy estimating it with some electronic assistance, you might find this project from [Roni Bandini] interesting.

[Roni] programmed an Arduino Nano R4 to estimate Pi using the Monte Carlo method. For this specific case, it involves drawing a circle inscribed inside a square. Points are then randomly scattered inside the square, and checked to see if they lie inside or outside the circle based on their position and distance of the circle’s outline from the center point of the square. By taking the ratio of the points inside the circle to the total number of points, you get an approximation of the ratio of the square and circle’s areas, which is equal to Pi/4. Thus, multiply the ratio by 4, and you’ve got your approximation of Pi.

[Roni] coded a program to run the Monte Carlo simulation on the Arduino Nano R4, taking advantage of the mathematical benefits of its onboard Floating Point Unit. It generates 100 new samples for the Monte Carlo approximation every second, improving the estimation of pi as it goes. It then displays the result on a 7-segment display, and beeps as it goes. [Roni] readily admits the project is a little too close in appearance to a classic Hollywood bomb.

We’ve seen some other neat Pi-calculating projects before, too.

Continue reading “2025 One Hertz Challenge: Estimating Pi With An Arduino Nano R4”

Tearing Down A Mysteriously Cheap $5 Fiber Optic To Cable TV Adapter

In his regular browsing on AliExpress, [Ben Jeffrey] came across something he didn’t understand—a $5 fiber optic to RF cable TV adapter. It was excessively cheap, and even more mysteriously, this thing didn’t even need power. He had to know how it worked, so he bought one and got down to tinkering with it.

Inside the device in question.

[Ben] needed some hardware to test the device with, so he spent $77 on a RF-to-fiber converter and a cheap composite-to-RF modulator so he could test the $5 fiber-to-RF part. A grand expenditure to explore a $5 device, but a necessary sacrifice for the investigation. Once [Ben] hooked up a fiber optic signal to the converter, he was amazed to see it doing its job properly. It was converting the incoming video stream to RF, and it could readily be tuned in on a TV, where the video appeared clean and true.

It was disassembly that showed how simple these devices really are. Because they’re one-way converters, they simply need to convert a changing light signal into an RF signal. Inside the adapter is a photodiode which picks up the incoming light, and with the aid of a few passives, the current it generates from that light becomes the RF signal fed into the TV. There’s no need for a separate power source—the photodiode effectively works like a solar panel, getting the power from the incoming light itself. The part is ultimately cheap for one reason—there just isn’t that much to it!

It’s a neat look at something you might suspect is complex, but is actually very simple. We’ve explored other weird TV tech before, too, like the way Rediffusion used telephone lines to deliver video content. Video after the break.

A Simple Simulator For Model Rocket Performance

When building a model rocket, it can be fun to get into the maths of it all—calculating the expected performance of your build, and then seeing how it measures up in the real world. To aid in that task, [Rotislav Persion] has created a simple web-based simulator for charting the potential performance of your own rockets.

The calculator lets you key in the fundamentals of your hobby rocket. Punch in the diameter of your rocket, its mass, the standard rocket engine you’re using, and the diameter and delay time of your parachute, and it will chart the altitude profile expected during flight.

Continue reading “A Simple Simulator For Model Rocket Performance”