I’ve Got Two Turntables And A Laser Engraver

Digital media provides us with a lot of advantages. For something like recording and playing back music, digital copies don’t degrade, they can have arbitrarily high quality, and they can be played in a number of different ways including through digital streaming services. That being said, a number of people don’t feel like the digital experience is as faithful to the original sound as it could be and opt for analog methods instead. Creating analog copies of music is a much tougher matter though, as [Marco] demonstrates by using a laser engraver to produce vinyl records.

[Marco] started this month-long project by assembling and calibrating the laser engraver. It has fine enough resolution to encode analog data onto a piece of vinyl, but he had to create the software. The first step was to generate the audio sample, then process it through a filter to remove some of the unwanted frequencies. From there, the waveform gets made into a spiral, accounting for the changing speed of the needle on the record as it moves to the center. Then the data is finally ready to be sent to the laser engraver.

[Marco] did practice a few times using wood with excellent success before moving on to vinyl, and after some calibration of the laser engraver he has a nearly flawless 45 rpm record ready to hit the turntable. It’s an excellent watch if not for anything than seeing a working wood record. We’ve actually seen a similar project before (without the wood prototyping), and one to play records from an image, but it’s been quite a while.

Thanks to [ZioTibia81] for the tip!

Continue reading “I’ve Got Two Turntables And A Laser Engraver”

Rope Core Drum Machine

One of our favorite musical hackers, [Look Mum No Computer] is getting dangerously close to building a computer. His quest was to create a unique drum machine, inspired by a Soviet auto-dialer that used rope core memory for number storage. Rope memory is the read-only sibling to magnetic core memory, the memory technology used to build some beloved computers back in the 60s and early 70s. Rope core isn’t programmed by magnetizing the ceramic donuts, but by weaving a wire through them. And when [Look Mum] saw the auto-dialer using the technology for a user-programmable interface, naturally, he just had to build a synth sequencer.
Continue reading “Rope Core Drum Machine”

A hand holding a paper cup pours orange resin into a mold. There are several different colors in a spiral inside a circular mold on a circular platform with holes around its perimeter sitting on a wooden table.

Reproducing Vinyl Records In Resin

While most are just plain, vinyl records can be found in a variety of colors, shapes, and some even glow in the dark. [Evan and Katelyn] decided to spruce up a plain old record by replicating it in bright, glow-in-the-dark resin.

By first making a silicone mold of the vinyl record and then pouring several different colors of resin into the resulting mold, [Evan and Katelyn] were able to make a groovy-looking record that still retained the texture necessary to transmit the original sounds of the record. The resulting piece has some static, but the music is still identifiable. That said, audiophiles would probably prefer to leave this up on the wall instead of in their phonograph.

Acrylic rings were laser cut and bolted together to build the form for the silicone mold with the original record placed at the bottom. To prevent bubbles, the silicone was degassed in a vacuum chamber before pouring over the record and the resin was cured in a pressure pot after pouring into the resulting mold.

If you’re interested in how records were originally made, check out this installment of Retrotechtacular. A more practical application of resin might be this technique to reproduce vintage plastic parts.

Continue reading “Reproducing Vinyl Records In Resin”

Dropping Marbles With Millisecond Accuracy

All eight version of the drop mechanism
The road to the perfect marble dropper

[Martin] of the band [Wintergatan] is on his third quest to build the ultimate musical marble machine, and that means dropping marbles with maximum reliability and precision timing. Working through several iterations, and returning to first principles, he engineered a marble gate that can drop marbles with a timing standard deviation of 0 ms.

[Wintergatan]’s first two machines, Marble Machine and Marble Machine X gained significant attention, but their complexity was their undoing. As it turns out, a Rube Goldberg machine that makes music has a lot of potential failure points, and both machines proved too temperamental for the live stage. The third version, Marble Machine XT (T for “touring”) needed to be re-engineered for simplicity and reliability to be practical on the road.

[Martin] broke the marble machine concept down to its key components, of which the marble drop gate is the most obvious. Using a pair of contact microphones to record the moment of release and impact, he can measure the timing with precision. The first design had a standard deviation of 3.91 ms, which is not nearly enough for us to detect by ear, but is not up to [Martin]’s standard for “tight music”. It used a clock-type escapement mechanism, where the wheel is the release gate. After reviewing his measurement software and compensating for drift between the software components of his setup, the measured standard deviation was reduced by 1 ms. Another breakthrough was to remove any guiding surfaces below the gate and let gravity do all the work. The 8th iteration proved to be the winner and used the escapement arm as the drop gate and wheel to hold back the queue of marbles.

Coming from an arts background, [Martin] had to learn a lot of engineering lessons the hard way. Looking at the videos on his YouTube channel, it seems like he is taking the lessons to heart, and we look forward to seeing the Marble Machine XT come to life.

Continue reading “Dropping Marbles With Millisecond Accuracy”

A baguette sits diagonally across a wooden cutting board. Above it sits an Arduino and an electronics breadboard.

Theremin Baguette Brings New Meaning To Breadboarding

Theremins are a bit of an odd instrument to begin with, but [AphexHenry] decided to put one where no theremin has gone before: into a baguette.

The “baguetophone” is a theremin and piezo-percussion instrument inside a hollowed-out baguette. Starting with a DIY theremin tutorial from Academy of Media Arts Cologne, [AphexHenry] added some spice with a piezo pickup inside the baguette to function as a percussion instrument. One noted downside of squeezing the instrument into such an unusual enclosure is that the antenna doesn’t respond as well as it might with a more conventional arrangement. Outputs from the piezo and antenna are run through Max/MSP on a computer to turn the bread into a MIDI controller. Like many DIY theremins, it appears that this build neglects the volume antenna, but there’s no reason you couldn’t add one. Maybe disguised as a piece of cheese?

Outside smuggling an instrument into a French café for a flash mob performance, this could also prove handy if you’re someone who gets hungry while playing music. We don’t recommend snacking on the Arduino even if it is ROHS compliant though.

If you want to learn more about how theremins work, check out Theremin in Detail. After that, you might want to browse all of our theremin articles or look at this project where they used a 555 instead.

Continue reading “Theremin Baguette Brings New Meaning To Breadboarding”

Sight And Sound Combine In This Engaging Synthesizer Sculpture

We’ll always have a soft spot for circuit sculpture projects; anything with components supported on nice tidy rows of brass wires always captures our imagination. But add to that a little bit of light and a lot of sound, and you get something like this hybrid synthesizer sculpture that really commands attention.

[Eirik Brandal] calls his creation “corwin point,” and describes it as “a generative dual voice analog synthesizer.” It’s built with a wide-open architecture that invites exploration and serves to pull the eyes — and ears — into the piece. The lowest level of the sculpture has all the “boring” digital stuff — an ESP32, the LED drivers, and the digital-to-analog converters. The next level up has the more visually interesting analog circuits, built mainly “dead-bug” style on a framework of brass wires. The user interface, mainly a series of pots and switches, lives on this level, as does a SeeedStudio WIO terminal, which is used to display a spectrum analyzer of the sounds generated.

Moving up a bit, there’s a seemingly incongruous vacuum tube overdrive along with a power amp and speaker in an acrylic enclosure. A vertical element of thick acrylic towers over all and houses the synth’s delay line, and the light pipes that snake through the sculpture pulse in time with sequencer events. The video below shows the synth in action — the music that it generates never really sounds the same twice, and sounds like nothing we’ve heard before, except perhaps briefly when we heard something like the background music from Logan’s Run.

Hats off to [Eirik] for another great-looking and great-sounding build; you may remember that his “cwymriad” caught our attention earlier this year.

Continue reading “Sight And Sound Combine In This Engaging Synthesizer Sculpture”

A man playing an accordion-like instrument made from two Commodore 64s

The Commodordion Turns Two C64s Into A Single Instrument

One of the main reasons the Commodore 64 became an icon of the 1980s was its MOS 6581 “SID” sound chip that gave it audio capabilities well beyond those of other microcomputers of the 8-bit era. The SID became something of a legend by itself among chiptune enthusiasts, and several electronic instruments have been designed that generate their sound through a SID chip. Not many of those look anything like traditional musical instruments however, so we’re delighted to see [Linus Åkesson]’s new project: two Commodore 64s joined back-to-back using a bellows to form a wonderful new instrument called the Commodordion. It can be played in a similar way one plays a traditional accordion: melodies are played with the right hand, chords with the left, and volume is adjusted by varying the pressure in the bellows.

An accordion-like instrument made from two Commodore 64sThe two computers are basically unmodified, and boot Commodore BASIC like they normally would. A custom circuit board emulates a cassette player and provides the software to be loaded into memory. Both computers run the same program and can be switched between the right-hand and left-hand role by pressing a specific key combination. The software in question is called Qwertuoso, and basically maps notes and various features of the SID chip to keys on the Commodore’s keyboard.

Of course, it’s the bellows that makes this instrument a true member of the accordion family. Made from 5.25″ floppy disks and sticky tape, it forms a more-or-less air-tight system linking the two computers. The airflow in the bellows is measured through a microphone placed next to the air intake: the amount of noise generated is roughly proportional to the amount of air being expelled or inhaled. This information is then used to modulate the volume generated by the two SID chips.

By [Linus]’s own admission it’s not the most ergonomic of instruments, so we’re doubly impressed by the amount of skill he demonstrates while playing it in the video embedded below. It’s not the first time either that he has turned a Commodore 64 into a musical instrument: he previously built a church organ and a theremin. While the Commodordion may look complicated, it’s actually much simpler in construction than a mechanical accordion.

Continue reading “The Commodordion Turns Two C64s Into A Single Instrument”