Dropping Marbles With Millisecond Accuracy

All eight version of the drop mechanism
The road to the perfect marble dropper

[Martin] of the band [Wintergatan] is on his third quest to build the ultimate musical marble machine, and that means dropping marbles with maximum reliability and precision timing. Working through several iterations, and returning to first principles, he engineered a marble gate that can drop marbles with a timing standard deviation of 0 ms.

[Wintergatan]’s first two machines, Marble Machine and Marble Machine X gained significant attention, but their complexity was their undoing. As it turns out, a Rube Goldberg machine that makes music has a lot of potential failure points, and both machines proved too temperamental for the live stage. The third version, Marble Machine XT (T for “touring”) needed to be re-engineered for simplicity and reliability to be practical on the road.

[Martin] broke the marble machine concept down to its key components, of which the marble drop gate is the most obvious. Using a pair of contact microphones to record the moment of release and impact, he can measure the timing with precision. The first design had a standard deviation of 3.91 ms, which is not nearly enough for us to detect by ear, but is not up to [Martin]’s standard for “tight music”. It used a clock-type escapement mechanism, where the wheel is the release gate. After reviewing his measurement software and compensating for drift between the software components of his setup, the measured standard deviation was reduced by 1 ms. Another breakthrough was to remove any guiding surfaces below the gate and let gravity do all the work. The 8th iteration proved to be the winner and used the escapement arm as the drop gate and wheel to hold back the queue of marbles.

Coming from an arts background, [Martin] had to learn a lot of engineering lessons the hard way. Looking at the videos on his YouTube channel, it seems like he is taking the lessons to heart, and we look forward to seeing the Marble Machine XT come to life.

Continue reading “Dropping Marbles With Millisecond Accuracy”

A baguette sits diagonally across a wooden cutting board. Above it sits an Arduino and an electronics breadboard.

Theremin Baguette Brings New Meaning To Breadboarding

Theremins are a bit of an odd instrument to begin with, but [AphexHenry] decided to put one where no theremin has gone before: into a baguette.

The “baguetophone” is a theremin and piezo-percussion instrument inside a hollowed-out baguette. Starting with a DIY theremin tutorial from Academy of Media Arts Cologne, [AphexHenry] added some spice with a piezo pickup inside the baguette to function as a percussion instrument. One noted downside of squeezing the instrument into such an unusual enclosure is that the antenna doesn’t respond as well as it might with a more conventional arrangement. Outputs from the piezo and antenna are run through Max/MSP on a computer to turn the bread into a MIDI controller. Like many DIY theremins, it appears that this build neglects the volume antenna, but there’s no reason you couldn’t add one. Maybe disguised as a piece of cheese?

Outside smuggling an instrument into a French café for a flash mob performance, this could also prove handy if you’re someone who gets hungry while playing music. We don’t recommend snacking on the Arduino even if it is ROHS compliant though.

If you want to learn more about how theremins work, check out Theremin in Detail. After that, you might want to browse all of our theremin articles or look at this project where they used a 555 instead.

Continue reading “Theremin Baguette Brings New Meaning To Breadboarding”

Sight And Sound Combine In This Engaging Synthesizer Sculpture

We’ll always have a soft spot for circuit sculpture projects; anything with components supported on nice tidy rows of brass wires always captures our imagination. But add to that a little bit of light and a lot of sound, and you get something like this hybrid synthesizer sculpture that really commands attention.

[Eirik Brandal] calls his creation “corwin point,” and describes it as “a generative dual voice analog synthesizer.” It’s built with a wide-open architecture that invites exploration and serves to pull the eyes — and ears — into the piece. The lowest level of the sculpture has all the “boring” digital stuff — an ESP32, the LED drivers, and the digital-to-analog converters. The next level up has the more visually interesting analog circuits, built mainly “dead-bug” style on a framework of brass wires. The user interface, mainly a series of pots and switches, lives on this level, as does a SeeedStudio WIO terminal, which is used to display a spectrum analyzer of the sounds generated.

Moving up a bit, there’s a seemingly incongruous vacuum tube overdrive along with a power amp and speaker in an acrylic enclosure. A vertical element of thick acrylic towers over all and houses the synth’s delay line, and the light pipes that snake through the sculpture pulse in time with sequencer events. The video below shows the synth in action — the music that it generates never really sounds the same twice, and sounds like nothing we’ve heard before, except perhaps briefly when we heard something like the background music from Logan’s Run.

Hats off to [Eirik] for another great-looking and great-sounding build; you may remember that his “cwymriad” caught our attention earlier this year.

Continue reading “Sight And Sound Combine In This Engaging Synthesizer Sculpture”

A man playing an accordion-like instrument made from two Commodore 64s

The Commodordion Turns Two C64s Into A Single Instrument

One of the main reasons the Commodore 64 became an icon of the 1980s was its MOS 6581 “SID” sound chip that gave it audio capabilities well beyond those of other microcomputers of the 8-bit era. The SID became something of a legend by itself among chiptune enthusiasts, and several electronic instruments have been designed that generate their sound through a SID chip. Not many of those look anything like traditional musical instruments however, so we’re delighted to see [Linus Åkesson]’s new project: two Commodore 64s joined back-to-back using a bellows to form a wonderful new instrument called the Commodordion. It can be played in a similar way one plays a traditional accordion: melodies are played with the right hand, chords with the left, and volume is adjusted by varying the pressure in the bellows.

An accordion-like instrument made from two Commodore 64sThe two computers are basically unmodified, and boot Commodore BASIC like they normally would. A custom circuit board emulates a cassette player and provides the software to be loaded into memory. Both computers run the same program and can be switched between the right-hand and left-hand role by pressing a specific key combination. The software in question is called Qwertuoso, and basically maps notes and various features of the SID chip to keys on the Commodore’s keyboard.

Of course, it’s the bellows that makes this instrument a true member of the accordion family. Made from 5.25″ floppy disks and sticky tape, it forms a more-or-less air-tight system linking the two computers. The airflow in the bellows is measured through a microphone placed next to the air intake: the amount of noise generated is roughly proportional to the amount of air being expelled or inhaled. This information is then used to modulate the volume generated by the two SID chips.

By [Linus]’s own admission it’s not the most ergonomic of instruments, so we’re doubly impressed by the amount of skill he demonstrates while playing it in the video embedded below. It’s not the first time either that he has turned a Commodore 64 into a musical instrument: he previously built a church organ and a theremin. While the Commodordion may look complicated, it’s actually much simpler in construction than a mechanical accordion.

Continue reading “The Commodordion Turns Two C64s Into A Single Instrument”

Lego Plays Electronic Drums

The ability to quickly try out an idea, and then expand and develop it, is what rapid prototyping is all about. Although we tend to think of 3D printing when rapid prototyping is mentioned, [Brick Technology] reminds us of the power of Lego, as he rapidly builds and improves an electromechanical drum machine.

Using Lego Technic pieces, he starts with a simple music box-style drum with moveable pins that pluck on spring-loaded levers, which in turn hit piezoelectric discs. The electronics side is simple, with the discs wired to a Roland sound module from an existing electronic drum kit. With the ability to instantly adjust, add and remove pieces, he quickly finds and fixes the problem of getting eleven hammer mechanisms together and working smoothly.

To get around the limited pin space on the drum and increase the length and variation potential of the rhythms, [Brick Technology] moved to a belt design that can accommodate significantly more pins. He also added an electric motor and various gearbox ratios for consistent and adjustable tempo. Together with his water vortex ball machine, he makes us think our workshops probably need a few hundred Lego Technic pieces.

Continue reading “Lego Plays Electronic Drums”

An LCD mounted inside a Roland synthesizer

Reverse-Engineering A Display Protocol To Repair A Roland Synthesizer

Repairing electronic devices isn’t as hard as it used to be. Thanks to the internet, it’s easy to find datasheets and application notes for any standard component inside your gadget, and once you’ve found the faulty one, you simply buy a replacement from one of a million web shops — assuming you don’t end up with a fake, of course. When it comes to non-standard components, however, things get more difficult, as [dpeddi] found out when a friend asked him for help in repairing a Roland Juno-G synthesizer with a broken display.

The main issue here was the fact that the display in question was a custom design, with no replacement or documentation available. The only thing [dpeddi] could figure out from the service manual was the basic pinout, which showed a parallel interface with two lines labelled “chip select” — an indication that the display contained two separate controllers. But the exact protocol and data format was not documented, so [dpeddi] brought out his logic analyzer to try and decode the signals generated by the synthesizer.

After a bit of trial and error, he was able to figure out the protocol: it looked like the display contained two KS0713-type LCD controllers, each controlling one half of the screen. Finding a compatible replacement was still proving difficult, so [dpeddi] decided instead to decode the original signals using a microcontroller and show the picture on a modern LCD driven by SPI. After some intial experiments with an ESP32, it turned out that the task of reading two reasonably fast parallel buses and driving an even faster serial one was a bit too much for the ESP, so [dpeddi] upgraded to a Raspberry Pi Pico. This worked a treat, and thanks to a 3D-printed mounting bracket, the new display also fit snugly inside the Roland’s case.

The Pico’s code is available on [dpeddi]’s GitHub page, so if you’ve also got a dodgy display in your Juno-G you can simply download it and use it to plug in a brand-new display. However, the method of reverse-engineering an existing display protocol and translating it to that of a new one is pretty universal and should come in handy when working with any type of electronic device: say, a vintage calculator or multimeter, or even another synthesizer.

Arduino Lo-Fi Orchestra closeup thumbnail

Lo-Fi Orchestra Learns Tubular Bells

Hardware projects often fall into three categories: Those that flash lights, those that make sounds and those that move. This virtuoso performance by [Kevin]’s “Lo-Fi Orchestra” manages all three, whilst doing an excellent job of reproducing the 1973 musical classic Tubular Bells by Mike Oldfield.

Producing decent polyphonic sounds of different timbres simultaneously is a challenge for simple microcontroller boards like Arduinos, so [Kevin] has embraced the “More is more” philosophy and split up the job of sound generation in much the same way as a traditional orchestra might. Altogether, 11 Arduino Nanos, 6 Arduino Unos, an Arduino Pro Mini, an Adafruit Feather 32u4, and a Raspberry Pi running MT32-Pi make up this electronic ensemble.

Arduino servo drumkit
Arduino Servo & Relay Drumkit

The servo & relay drumkit is a particular highlight, providing some physical sounds to go along with the otherwise solid-state generation.

The whole project is “conducted” over MIDI and the flashing sequencer in the middle gives a visual indication of the music that is almost hypnotic. The performance is split into two videos (after the break), and will be familiar to fans of 70’s music and classic horror movies alike. We’re astonished how accurately [Kevin] has captured the mood of the original recording.

If this all looks slightly familiar, it may be because we have covered the Lo-Fi Orchestra before, when it entertained us with a rousing rendition of Gustav Holst’s Planets Suite. If you’re more interested in real Tubular Bells than synthesized ones, then check out this MIDI-controlled set from 2013. Continue reading “Lo-Fi Orchestra Learns Tubular Bells