Holographic Cellphones Coming Thanks To AI

Issac Asimov foresaw 3D virtual meetings but gave them the awkward name “tridimensional personification.” While you could almost do this now with VR headsets and 3D cameras, it would be awkward at best. It is easy to envision conference rooms full of computer equipment and scanners, but an MIT student has a method that may do away with all that by using machine learning to simplify hologram generation.

As usual, though, the popular press may be carried away a little bit. The key breakthrough here is that you can use TensorFlow to generate real-time holograms at a few frames per second using consumer-grade processing power found in a high-end phone from images with depth information, which is also available on some phones. There’s still the problem of displaying the hologram on the other side, which your phone can’t do. So any implication that you’ll download an app that enables holograms phone calls is hyperbole and images of this are in the realm of photoshop.

Continue reading “Holographic Cellphones Coming Thanks To AI”

What’s New, From 1927

Here we are at the start of the new year, which for the Internet Archive means a note about what has just entered the public domain. 1927’s finest previously copyrighted materials are now up for grabs in the public domain, which means there’s a treasure trove of films, books, and music to freely copy and remix.

Their article highlights a few notable pieces of 1927’s popular culture , of which we suggest you should definitely take note of Fritz Lang’s Metropolis if you have any interest in sci-fi, but for Hackaday readers there’s not much else in the article itself relating to technology. Delving into the archive for 1927 is still a fascinating pastime though, because beyond the interest of seeing what’s now free it led onto what was the state of technology in the 1920s. And here we find ourselves as much navigating the English language as we do the library itself, because so much of what we do uses vocabulary from the decades since. Continue reading “What’s New, From 1927”

All Aboard The Garbage Express

Cog railways are a somewhat unusual way of train locomotion, typically only installed when a train needs to climb steep terrain. Any grade above about 10% needs the extra traction since the friction between the wheels and rails won’t be enough to push the train forward or keep it from falling backwards. Even without a steep hill to climb, sometimes a cog railway is necessary for traction as [Max Maker] discovered while building a train for his garbage cans.

The build started out as a way to avoid having to wheel his seven waste bins to the curb every month. Originally he built a more standard railway with a simple motor to drive the train, but he quickly realized that there wasn’t enough grip even when using plastic wheels, even though this track follows fairly flat terrain. Since the rail is built out of steel he quickly welded up a rack-and-pinion system to one of the rails. The build goes through many iterations before he finally settles on a design that solves the problem, and it includes several other features as well such as remote control and a spring-loaded automatic charger for the train at its station in the back yard.

While we always appreciate the eccentricity of those who would automate a relatively simple task that only happens once a month, [Max Maker] hopes to build this into a commercial product aimed at the elderly or disabled who would really benefit from a reliable, semi-automatic system that takes their trash bins to the curb for them. And, if your system only involves a single trash can, there are other ways of automating the task of taking the garbage to the curb.

Continue reading “All Aboard The Garbage Express”

The Whole Thing In Python

[hsgw] built a macropad in Python, and that’s not a strange language to choose to program the firmware in these days. But that’s just the tip of the iceberg. The whole process — from schematic capture, through routing and generating the PCB, and even extending to making the case — was done programmatically, in Python.

The macropad itself isn’t too shabby, sporting an OLED and some nice silkscreen graphics, but the whole point here is demonstrating the workflow. And that starts with defining the schematic using skidl, laying out the board with pcbflow, which uses a bunch of KiCAD footprints, and then doing the CAD design for a case in cadquery, which is kind of like OpenSCAD.

The result is that the whole physical project is essentially code-defined from beginning to end.  We’re not sure how well all the different stages of the workflow play together, but we can imagine that this makes versioning a ton easier.  Coding a PCB is probably overkill for something simple like this — you’d be faster to lay it out by hand for sure — but it doesn’t really scale.  There’s definitely some level of complexity where you don’t want to be clicking an pointing, but rather typing. Think of this as the “hello world” to designing in code.

Some of the tools in the workflow were new to us, but if you’d like an in-depth look at cadquery, we’ve got you covered. [Tim Böscke]’s insane CPU made from 555 timers (yes, really) uses pcbflow. And if you’d like to dig back a bit into the origins of Python PCB design, this post introduces CuFlow, on which pcbflow was based.

A Bicycle Trailer Fit For Heavy Haulage

One of the problems of being a cyclist is that a bicycle just isn’t designed to carry much more than a human. You can get panniers and hang shopping bags from the handlebars, but sooner or later there’s a load which just doesn’t fit. At that point there’s only one way forward that involves staying on two wheels: find a bike trailer. If you fancy building one yourself, then there’s La Charette (French language, Google Translate link), an open-source three-wheeler design from France.

Construction is a sturdy welded box section tube spaceframe, with the single wheel at the front providing steering, and a towing bar attached to the seat post of the bicycle. Along with the impressive load capacity comes the problem of towing it, and for the cyclist with less-than-superhuman strength there’s the option of an electrically-driven front wheel. Stopping the whole thing is an essential feature with loads this size, and to that end there’s an inertial braking system operated by the force on the towing bar.

All in all it appears to be a useful trailer, albeit on the large side for storage when not being used. It’s certainly one of the larger bike trailers we’ve seen, though not perhaps the most stylish.

Thanks [Jeff] for the tip!

3D render of the badge programming adapter PCB

Supercon 2022 Badge Gets A Tinkering Helper Add-on

Are you one of the lucky ones to own a Hackaday Supercon 2022 badge? Would you like to make it even easier to program than it already is? [brokebit] has exactly the project you might’ve been dreaming of all along — it’s a Supercon 2022 Badge programming adapter. With pass-through for all badge pins, four buttons, a total of ten DIP switches and four LEDs, the sheer IO of this add-on makes good use of the badge’s expansion header. But that’s not all, as there’s a USB-UART converter accessible through a MicroUSB socket.

Using mostly through-hole components, this board won’t leave you digging through parts drawers for exotic buttons or pin headers; most everything is jellybean. The pass-through capability of the adapter means that other badge add-ons will be compatible and you can even use this adapter to debug them, with DIP switches helping you disconnect whatever onboard circuitry interferes. For instance, if you’re not looking for USB-UART functionality provided by the classic CP2102, the dual DIP switches are right there for you to disconnect it on the fly.

The board is 6 layers, but since the quoted price was the same as a 4-layer board, it made for a more comfortable layout. Want a refresher on the badge? Here you go, and here’s our write-up about it before Supercon. Hackers have been stretching the limits of what the 2022 badge can get done — here’s a punch card reader, for instance.

Dittytoy recreation of Jean-Michel Jarre's Oxygene Part IV

Generative Music Created In Minimalistic Javascript Code

Dittytoy user [srtuss] has recreated one of the most influential works of electronic music in an elegant nineteen kilobytes of Javascript code. The recreation of Jean-Michel Jarre’s Oxygene Part IV on the Dittytoy platform, currently in beta, plays live right in your browser. Dittytoy empowers users to create generative music online using a simple Javascript API. Syntax of the API is loosely based on that of Sonic Pi, a code-based music creation and performance tool.

“Oxygene (Part IV)” was recorded by Jean-Michel Jarre in 1976. It was Jarre’s most successful single, charted on the top ten in several countries, and was more recently featured in the Grand Theft Auto IV video game. In the 1990s, famed electronic music innovator Brian Eno used the term “generative music” to describe music generated by an electronic system comprising ever-changing elements that may be algorithmic or random.

Recreation of Jarre’s work required modeling the Korg Minipops 7 drum machine, one of the instruments presented in our slew of open-source synthesizers.