1,000 Watt Power Supply Tear Down And Repair

[TheSignalPath] wanted to repair a broken Instek PSW80-40.5 because it has a lot of output for a programmable power supply — 1,080 watts, to be exact. This isn’t a cheap supply — it looks like it costs about $2,200 new. The unit wasn’t working and when he took it apart, he found a nasty surprise. There is a base PCB and three identical power supply modules, and virtually no access without disconnecting the boards. He continued the teardown, and you can see the results in the video below.

Each of the power supply modules are two separate PCBs and the design has to account for the high currents required. The power supply is a switching design with some filtering on the motherboard. One of the boards of the power supply module rectifies the incoming line voltage to a high DC voltage (about 400 volts). The second board then does DC to DC conversion to the desired output.

Continue reading “1,000 Watt Power Supply Tear Down And Repair”

Fixing A Crazy Expensive Spectrum Analyser, With Solder

It used to be a spectrum analyzer was an exotic piece of gear. However, these days it is pretty common for a scope to have some ability to do the job — that is, plot amplitude versus frequency. However, a dedicated commercial product will usually have a lot more bandwidth and other features. [Signal Path] picked up an Anrtitsu 7.1 GHz portable spectrum analyzer. An expensive bit of kit — anywhere from around $4,000 to $8,000 on eBay — if it is working, but this one was not. It needed power, but it was also missing the internal flash card that the device uses to boot.

Being portable, there’s a lot of digital and RF electronics crammed into a very small space. The initial tear down didn’t look very interesting because it was mostly an RF shield. However, many tiny screws later, you can finally see the actual electronics.

Continue reading “Fixing A Crazy Expensive Spectrum Analyser, With Solder”

Teardown And Repair Of A Police Recorder

You should probably hope you haven’t seen [Techmoan’s] cassette recorder before. That’s because it is a Neal interview recorder that was mainly used by police to tape interrogations. This one was apparently used by the Royal Navy and was sold for parts. Turns out, the repair was simple, but the teardown and the analysis of the machine — you can see it in the video below — is pretty interesting if you’ve never seen one of these before.

The unit looks like a heavy-duty piece of industrial electronics from the 1980s. Unlike a commercial tape deck, this one is made to do one thing: record. You can’t even rewind a tape in it. Also unlike a consumer recorder, the Neal has a few special features aimed at making sure you didn’t miss some important confession on tape. First, it beeps if there’s no microphone plugged in. When [Techmoan] showed the recording head, we noticed it looked like it was split in half. Towards the end of the video, we found out why. In addition, the unit records two tracks: one audio track and another with a voice reading the elapsed time every 10 seconds — pretty high tech for its day.

Continue reading “Teardown And Repair Of A Police Recorder”

Helium Can Stop Your IPhone — Maybe Other MEMS, Too

Sometimes hacking isn’t as much about building something, it’s about getting to the root of a particularly difficult problem. [Erik Wooldrige] was facing a problem like that. He’s a system specialist at a hospital near Chicago. Suddenly a bunch of iPhones and Apple watches were failing or glitching. The only thing anyone could think of was the recent install of an MRI machine.

Sure, an MRI machine can put out some serious electromagnetic pulses, but why would that only affect Apple products? Everything else in the hospital, including Android phones, seemed to be OK. But about 40 Apple devices were either dead or misbehaving.

Continue reading “Helium Can Stop Your IPhone — Maybe Other MEMS, Too”

Rebuilding An Amiga 500 PSU

One of the challenges of keeping a vintage computer up and running is the limited availability of spare parts. While not everything has hit dire levels of availability (not yet, anyway), it goes without saying that getting a replacement part for a 30+ year old computer is a bit harder than hitting up the local electronics store. So the ability to rebuild original hardware with modern components is an excellent skill to cultivate for anyone looking to keep these pieces of computing history alive in the 21st century.

This is in ample evidence over at [Inkoo Vintage Computing], where repairs and upgrades to vintage computers are performed with a nearly religious veneration. Case in point: this detailed blog post about rebuilding a dead Amiga 500 power supply. After receiving the machine as a donation, it was decided to attempt to diagnose and repair the PSU rather than replace it with a newly manufactured one; as much for the challenge as keeping the contemporary hardware in working order.

What was found upon opening the PSU probably won’t come as a huge surprise to the average Hackaday reader: bad electrolytic capacitors. But these things weren’t just bulged, a few had blown and splattered electrolyte all over the PCB. After removing the bad caps, the board was thoroughly inspected and cleaned with isopropyl alcohol.

[Inkoo Vintage Computing] explains that there’s some variations in capacitor values between different revisions of the Amiga PSU, so it’s best to match what your own hardware had rather than just trying to look it up online. These capacitors in particular were so old and badly damaged that even reading the values off of them was tricky, but in the end, matching parts were ordered and installed. A new fuse was put in, and upon powering up the recapped PSU, the voltages at the connector were checked to be within spec before being plugged into the Amiga itself.

As a test, the Amiga 500 was loaded up with some demos to really get the system load up. After an hour, the PSU’s transformer was up to 78°C and the capacitors topped out at 60°C. As these parts are rated for 100°C (up from 85°C for the original parts), everything seemed to be within tolerances and the PSU was deemed safe for extended use.

This sort of repair isn’t exactly rare with hardware this old, and we’ve seen similar work done on a vintage Apple power supply in the past. If you’re less concerned with historical accuracy, [Inkoo Vintage Computing] has also shown off adapting an ATX PSU for use with the Amiga.

DMCA Review: Big Win For Right To Repair, Zero For Right To Tinker

This year’s Digital Millennium Copyright Act (DMCA) triennial review (PDF, legalese) contained some great news. Particularly, breaking encryption in a product in order to repair it has been deemed legal, and a previous exemption for reverse engineering 3D printer firmware to use the filament of your choice has been broadened. The infosec community got some clarification on penetration testing, and video game librarians and archivists came away with a big win on server software for online games.

Moreover, the process to renew a previous exemption has been streamlined — one used to be required to reapply from scratch every three years and now an exemption will stand unless circumstances have changed significantly. These changes, along with recent rulings by the Supreme Court are signs that some of the worst excesses of the DMCA’s anti-circumvention clause are being walked back, twenty years after being enacted. We have to applaud these developments.

However, the new right to repair clause seems to be restricted to restoring the device in question to its original specifications; if you’d like to hack a new feature into something that you own, you’re still out of luck. And while this review was generally favorable of opening up technology to enable fair use, they didn’t approve Bunnie Huang’s petition to allow decryption of the encryption method used over HDMI cables, so building your own HDMI devices that display encrypted streams is still out. And the changes to the 3D printer filament exemption is a reminder of the patchwork nature of this whole affair: it still only applies to 3D printer filament and not other devices that attempt to enforce the use of proprietary feedstock. Wait, what?

Finally, the Library of Congress only has authority to decide which acts of reverse engineering constitute defeating anti-circumvention measures. This review does not address the tools and information necessary to do so. “Manufacture and provision of — or trafficking in — products and services designed for the purposes of circumvention…” are covered elsewhere in the code. So while you are now allowed decrypt your John Deere software to fix your tractor, it’s not yet clear that designing and selling an ECU-unlocking tool, or even e-mailing someone the decryption key, is legal.

Could we hope for more? Sure! But making laws in a country as large as the US is a balancing act among many different interests, and the Library of Congress’s ruling is laudably clear about how they reached their decisions. The ruling itself is worth a read if you want to dive in, but be prepared to be overwhelmed in apparent minutiae. Or save yourself a little time and read on — we’ve got the highlights from a hacker’s perspective.

Continue reading “DMCA Review: Big Win For Right To Repair, Zero For Right To Tinker”

You’ll Flip For This 7404 IC Motherboard Fix

We often lament that the days of repairable electronics are long gone. It used to be you’d get schematics for a piece of gear, and you could just as easily crack it open and fix something as the local repairman — assuming you had the knowledge and tools. But today, everything is built to be thrown away when something goes wrong, and you might as well check at the end of a rainbow if you’re searching for a circuit diagram for a new piece of consumer electronics.

But [Robson] writes in with an interesting story that gives us hope that the “old ways” aren’t gone completely, though they’ve certainly changed for the 21st century. After blowing out his laptop’s USB ports when he connected a suspect circuit, he was desperate for a fix that would fit his student budget (in other words, nearly zero). Only problem was that he had no experience fixing computers. Oh, and it takes months for his online purchases to reach him in Brazil. Off to a rocky start.

His first bit of luck came with the discovery he could purchase schematics for his laptop online. Now, we can’t vouch for the site he used (it sure isn’t direct from Dell), but for under $5 USD [Robson] apparently got complete and accurate schematics that let him figure out what part was blown on the board without even having to open up the computer. All he had to do was order a replacement IC (SY6288DAAC), and solder it on. It took two months for the parts to arrive, and had to do it with an iron instead of a hot air station, but in the end, he got the part installed.

Continue reading “You’ll Flip For This 7404 IC Motherboard Fix”