Robot Blade Runner Turns In World Record Time

While we wish colleges and universities competed more on academics, we can’t deny that more people are interested in their athletics programs. Oregon State, however, has done a little of both since their bipedal robot, Cassie, became the world’s fastest bipedal robot according to the Guinness Book of World Records. You can see a video of the 100 meter run below, but don’t blink. The robot turned in a time of around 25 seconds.

Impressive, but still not on par with Usan Bolt’s time of under 10 seconds for the same distance. If you want to see what that would be like, try running the long way across a football field and see how far you get in 25 seconds. There isn’t a lot of technical detail about the robot, but you can intuit some things from watching it go. You can also find a little more information on the robot and some of its siblings on the University’s website.

If you think robots won’t ever run as well as humans, we used to think the same thing about playing chess. This doesn’t look like we normally envision a bipedal robot. Then again, there isn’t any reason robots have to look, or move, like we do.

Continue reading “Robot Blade Runner Turns In World Record Time”

A circular wheeled robot sits on a white background. There is a green tank of butane/propane in the center surrounded by wires and electronics.

Doomba: Purifying Your Floors With Fire

If you’ve ever thought that your floor cleaning robot eating the fringe on your rug wasn’t destructive enough, [Kyle Brinkerhoff] is working on a solution — Doomba.

This blazingly fast RC vehicle has a tank of butane/propane gas nestled snugly amid its electronics and drive system to fuel a (not yet implemented) flamethrower. Watching how quickly this little bot can move in the video below certainly made our hearts race with anticipation for the inevitable fireworks glory of completed build. Dual motors and a tank-style drive ensure that this firebug will be able to maneuver around any obstacle.

As of writing, the flamethrower and an updated carriage for the drivetrain are underway. Apparently, spinning very quickly in circles can be just as disorienting for robots as it is for us biological beings. During the test shown below, the robot kicked out one of its drive motors. [Kyle] says the final touch will be putting the whole assembly inside an actual Roomba shell for that authentic look.

With spooky season upon us, it’s always good to have the cleansing power of fire at hand in case you find more than you bargained for with your Ghost-Hunting PKE Meter. While there’s no indication whether Doomba can actually run DOOM, you might be interested in this other Doomba Project that uses Roomba’s maps of your house to generate levels for the iconic shooter.

Continue reading “Doomba: Purifying Your Floors With Fire”

Robotic Platform Is Open Sourced And User Friendly

Having a 3D printer or a CNC machine available for projects is almost like magic. Designing parts in software and having them appear on the workbench is definitely a luxury. But for a lot of us, these tools aren’t easily available and projects that use them can be out-of-reach. That’s why one of the major design goals of this robotics platform was to use as many off-the-shelf components as possible.

The robot is called the OpenScout and, as its name implies, intends to be a fully open-source robotics platform for a wide range of use cases. It uses readily-available aluminum extrusion as a frame, which bolts together without any other specialized tools like welders. The body of the robot is articulating, helping it navigate uneven terrain outdoors. The specifications also call for using an Arduino to drive the robot, although there is plenty of space in the robot body to house any robotics platform you happen to have on hand.

For anyone looking to get right into the useful work of what robots can do, rather than spending time building up a platform from scratch, this is an excellent project. It’s straightforward and easy to build without many specialized tools. The unique articulating body design should make it effective in plenty of environments. If you do have a 3D printer, though, that opens up a lot of options for robotics platforms.

Robots Chase Down Balls In Fun Outdoor Game

Art installations aren’t always about static sculpture or pure aesthetics. In the case of Operation Kiba, they can be fun games for everyone to enjoy.

The aim of Operation Kiba is for the players to collect all the “balls” on the playing field, which are intended to represent scoops of ice cream. Collecting the balls is done via robot. Each player is ostensibly tasked with collecting one color of ball or the other, but players often decide to work together in harmony instead. The balls are released at the start of the game by tipping over a big bowl. This is half the fun, and is achieved by tugging a string which upends the vessel and scatters the balls.

The remote-control robots themselves come from an earlier art installation the group built called Bubble Blast. They’re built using a 3D printed chassis, with wheels on each side driven by DC gear motors. With tank-style steering, they can rotate on the spot, providing good maneuverability. An Arduino Nano runs the show, receiving commands over a 433 MHz radio link. Power is via DeWalt cordless drill batteries, and the robots are controlled via arcade sticks. They’re color-coded to match the balls in the game.

As far as art installations go, it may not be fancy or pretentious, but it certainly looks like a lot of fun. We’re sure it could eventually guide many players towards the exciting world of antweight combat robotics. Video after the break.

Continue reading “Robots Chase Down Balls In Fun Outdoor Game”

Retrotechtacular: The Original Robot Arm

Do you know the name [George Devol]? Probably not. In 1961 he received a patent for “Programmed Article Transfer.” We’d call his invention the first robot arm, and its name was the Unimate. Unlike some inventors, this wasn’t some unrealized dream. [Devol’s] arm went to work in New Jersey at a GM plant. The 4,000 pound arm cost $25,000 and stacked hot metal parts. With tubes and hydraulics, we imagine it was a lot of work to keep it working. On the other hand, about 450 of the arms eventually went to work somewhere.

The Unimate became a celebrity with an appearance in at least one newsreel — see below — and the Johnny Carson show. Predictably, the robot in the newsreel was pouring drinks.

Continue reading “Retrotechtacular: The Original Robot Arm”

Robot: Will Draw For Food

Biological systems often figure out the best ways to get what they need to survive. Now a robot created by researchers at Worcester Polytechnic Institute, Imperial College London, and the University of Illinois Urbana Champaign can make the same claim. The robot operates in front of a plate that has electrical terminals on one end and various obstacles between those terminals and the robot.

The robot can pick up and rearrange some of the items on the plate and then draws paths to the terminals using conductive ink. The effect is the robot gets to “eat” if it solves the connection puzzle.

Continue reading “Robot: Will Draw For Food”

An image of the track system of the Calico wearable on top of a garment. Different possible positions of the device (elbow, shoulder, etc) are shown by red dots overlayed on the top of the image.

The Calico Wearable Rides The Rails

If you’re feeling underwhelmed by yet another smartwatch announcement, then researchers at the University of Maryland may have just the wearable for you. Instead of just tracking your movement from one spot, Calico winds around you like a cartoon sidekick.

Using a “railway system,”(PDF) the Calico can travel around a garment to get better telemetry than if it were shackled to a wrist. By moving around the body, the robot can track exercise, teach dance moves, or take up-close heart measurements. Tracks can be magnetically linked across garments, and Calico can use different movement patterns to communicate information to the user.

This two-wheeled robot that rides the rails is built around a custom PCB with a MDBT42Q microcontroller for a brain which lets it communicate with a smartphone over Bluetooth Low Energy. Location is monitored by small magnets embedded in the silicone and plastic living hinge track, and it can use location as a way to provide “ambient visual feedback.”

The researchers even designed a friendly cover for the robot with googly eyes so that the device feels more personable. We think animated wearables could really take off since everyone loves cute animal companions, assuming they don’t fall into the uncanny valley.

If you love unusual wearables as much as we do, be sure to check out Wearable Sensors on Your Skin and the Wearable Cone of Silence.

Continue reading “The Calico Wearable Rides The Rails”