Animatronic Puppetry Controller Skips Joystick Or Keyboard

One of the major challenges of animatronics is creating natural looking motion. You can build something with an actuator for every possible degree of freedom, but it will still be disappointing if you are unable to control it to smoothly play the part. [Mr. Volt] has developed a passion for animatronic projects, but found programming them tedious, and manual control with keyboard or controller difficult to do right. As an alternative, he is building Waldo, an electronic puppetry controller.

The Waldo rig is being developed in conjunction with [Mr. Volt]’s build of Wheatley, the talkative ball-shaped robot from the Portal 2 game. The puppetry rig consists of a series of rings for [Mr Volt]’s hand, with the position of each being read by angle sensors. This allows him to control Wheatley’s orientation of the body and eyeball, eyelids, and handles. Wheatley and Waldo both still need a few refinements, but we look forward to seeing the finished project in action.

The Portal games have inspired several featured projects, including GLaDOS, the turrets, and of course more Wheatly builds.

Continue reading “Animatronic Puppetry Controller Skips Joystick Or Keyboard”

Smooth Servo Motion For Lifelike Animatronics

Building an animatronic robot is one thing, but animating it in a lifelike fashion is a completely different challenge. Hobby servos are cheap and popular for animatronics, but just letting it move at max speed isn’t particularly lifelike. In the video after the break, [James Bruton] demonstrates how to achieve natural motion with a simple animatronic head and a few extra lines of code.

Very little natural body movement happens at a constant speed, it’s always accelerating or decelerating. When we move our heads to look at something around us, our neck muscles accelerate our head sharply in the chosen direction and then slows down gradually as it reaches its endpoint. To do this in Arduino/C code, a new intermediate position for the servo is specified for each main loop until it reaches the final position. The intermediate value is the sum of 95% of the current position, and 5% of the target position. This gives the effect of the natural motion described above. The ratios can be changed to suit the desired speed.

The delay function is usually one of the first timing mechanisms that new Arduino programmers learn about, but it’s not suited for this application, especially when you’re controlling multiple servos simultaneously. Instead, the millis function is used to keep track of the system clock in the main loop, which fires the position update commands at the specified intervals. Adafruit wrote an excellent tutorial on this method of multitasking, which [James] based his code on. Of course, this should be old news to anyone who has been doing embedded programming for a while, but it’s an excellent introduction for newcomers.

Like most of [James]’s projects, all the code and CAD files are open source and available on GitHub. His projects make regular appearances here on Hackaday, like his mono-wheel balancing robot and mechanically multiplexed flip-dot display.

Continue reading “Smooth Servo Motion For Lifelike Animatronics”

The BornHack Badge Gets A Bubble

In a year of semiconductor shortages it’s a difficult task to deliver an electronic conference badge, so this year’s BornHack camp in Denmark had an SAO prototyping board as its badge. Some people made blinkies with theirs, but that wasn’t enough for [Inne] who had to go a step further with a light-up pneumatic bubble badge. It’s based upon a previous project producing silicone inflatable bubbles, but in a portable badge form.

On the front of the PCB is a multi-colour LED for illumination, while on the back is a small microcontroller board, a pressure sensor, and a motor driver circuit. A small air pump and battery sits in a pocket connected by a cable and a flexible tube, allowing the bubble to inflate at will. An interesting detail was the use of a cut-down hypodermic needle to carry the air through the silicone wall of the bubble. When seen up close at the camp it was an unnervingly organic effect, if there’s an uncanny valley of badges this is it.

We don’t see much in the way of soft robotics on these pages, so this happy crossover with BadgeLife is a special treat. It’s not entirely alone here though.

Small Footprint Scara Laser Engraver Has Massive Build Area

One of the limitations of the conventional Cartesian CNC platforms is that the working area will usually be smaller than its footprint. SCARA arms are one of the options to get around this, as demonstrated by [How To Mechatronics], with his SCARA laser engraver.

This robot arm is modified from the original build we featured a while back, which had a gripper mounted. It uses mainly standard 3D printer components with 3D printed frame parts. The arms lengths are sized to fold over the base and take up little table horizontal space when not in use. It can work in a large semi-circular area around itself, and if a proper locating and homing method is implemented, it can be moved around and engrave a large area section by section.

One of the challenges of SCARA arms is rigidity. As the cantilevered arm extends, it tends to lean over under its weight. In [How To Mechatronics]’s case, it showed up as skewed engravings, which he managed to mitigate to some degree in the Marlin firmware.

Another possible solution is to reduce the weight of the arms by moving the motors to the base, as was done with the Pybot or dual-arm SCARA printers like the RepRap Morgan.

Continue reading “Small Footprint Scara Laser Engraver Has Massive Build Area”

Grappling Hook Robot Swings Like Spiderman

We’ll admit it is a bit of a gimmick, but [Adam Beedle’s] Spider-Bot did make us smile. The little robot can launch a “web” and use it to swing. It is hard to picture, but the video below will make it all clear. It can also use the cable to climb a wall, sort of.

The bot’s ability to fling a 3D printed hook on a tether is remarkable. Details are scarce, but it looks like the mechanism is spring-loaded with a servo motor to release it. Even trailing a bit of string behind it, the range of the hook is impressive and can support the weight of the robot when it winches itself up. There’s even a release mechanism that reminds us more of Batman than Spiderman.

If we were going full autonomous, we’d consider a vision system. On the other hand, you could probably tell a lot by the tension on the cable and some way to measure the angle of it coming out of the robot. If you come up with a practical use for any of this, we’d love to see it.

We’ve seen robots that fly, jump, and can climb walls before. We don’t remember one that swings like Tarzan.

Continue reading “Grappling Hook Robot Swings Like Spiderman”

Welcome To Our New Robot… Nurses

Hanson robotics wants to make robots, but not “Lost in Space” [Robby] robots. Think more [Data] from Star Trek robots. They’ve announced [Grace], a lifelike robot made to take on nursing duties for doctors and the elderly. In conjunction with Singularity Studio, the robot resembles the company’s [Sophia] robot which is made to be as realistic as possible given current technology and, apparently, has Saudi citizenship.

The robot has heat-sensitive cameras and other sensors so it can read data from patients directly. It uses the company’s Frubber for the face. The company says:

[Frubber is] a proprietary nanotech skin that mimics real human musculature and skin. This allows our robots to exhibit high-quality expressions and interactivity, simulating humanlike facial features and expressions.

Continue reading “Welcome To Our New Robot… Nurses”

Pedal Operated Cable Cam For Hands Free Video

[Vintage Backyard RC] has built a nice little RC track in his backyard, and wanted a motorized dolly system to capture footage along the main straight with his GoPro. Using only junk box parts, he created a simple pedal operated RC cable dolly. (Video, embedded below.)

[Vintage Backyard RC] first experimented with a high speed car running on a length of model train track. However, it was bumpy at high speed, the track is expensive, and it needs 50 V running through the open tracks. The new cable cam gives a much smoother ride, and cost almost nothing with his supply of old RC gear. The cable cam is powered by a brushed motor from an RC airplane, running with plastic wheels on some weed trimmer line. Control is provided by an old 27 MHz RC system, with the controller’s internals transplanted into an old wah-wah guitar pedal.

The non-geared motor can drive the cable much faster than required, so [Vintage Backyard RC] needs to exercise some careful foot control to run it at a reasonable speed. This is easier said than done while also controlling an RC car with his hands, so he plans to replace the RC system with a newer 2.4 GHz system software end-point limits. We would be reaching for the ESP32 or any other microcontroller with wireless that we’ve come to know, but it’s worth remembering that most people are not familiar with these tools.

This is definitely the most minimalist cable cam we’ve covered this year, but just demonstrates how simple they can be to build. You can always upgrade to a sleek folding frame from 3D printed parts, and add machine vision and long range video streaming.

Continue reading “Pedal Operated Cable Cam For Hands Free Video”