Radio Emissions Over Sunspots Challenge Models Of Stellar Magnetism

Sustained radio emissions originating from high over a sunspot are getting researchers thinking in new directions. Unlike solar radio bursts — which typically last only minutes or hours — these have persisted for over a week. They resemble auroral radio emissions observed in planetary magnetospheres and some stars, but seeing them from about 40,000 km above a sunspot is something new. They don’t seem tied to solar flare activity, either.

The signals are thought to be the result of electron cyclotron maser (ECM) emissions, which involves how electrons act in converging geometries of magnetic fields. These prolonged emissions challenge existing models and ideas about how solar and stellar magnetic processes unfold, and understanding it better could lead to a re-evaluation of existing astrophysical models. Perhaps even leading to new insights into the behavior of magnetic fields and energetic particles.

This phenomenon was observed from our very own sun, but it has implications for better understanding distant stellar bodies. Speaking of our sun, did you know it is currently in it’s 25th Solar Cycle? Check out that link for a reminder of the things the awesome power of our local star is actually capable of under the right circumstances.

The Sunspots Are Coming (Again)

There are a bunch of ways to estimate the age of a radio amateur, by the letters in their callsign, by their preferred choice of homebrewing technology, or sometimes by their operating style. One that perhaps doesn’t immediately come to mind is to count how many solar cycles they remember, and since the current cycle 25 is my fourth I guess I’ve seen a few. Cycle 25 is so far shaping up to be quite an active one especially of late, which popular media are describing as bombarding us with flares from a “sunspot archipelago” and the more measured tones of spaceweather.com giving us warning of X-class flares heading in our direction, today!

Jean-Claude Roy, VP, Hydro Quebec
We wouldn’t be this guy for anything. From CBC’s coverage of the 1989 power outage.

As the technology for solar observation has increased in sophistication and the Internet has allowed anyone to follow the events above us as they unfold, the awareness of solar phenomena has shifted away from the relatively small numbers of astronomers and radio amateurs who would once have been eagerly awaiting a solar cycle to a wider audience. Ever since a particularly severe event in March 1989  during cycle 22 caused disruptions including the blackout of a significant part of Canada it’s been a periodic topic of mild doom in slow news moments. But what lies behind the reports of solar activity? Perhaps it’s time to take a look.

The solar cycle refers to the 11-year period of solar activity from a maximum of observed sunspots through a minimum to a new maximum. The sunspots are the visible evidence of the solar magnetic field changing its polarity, and appear as darker areas where there is a greater strength of magnetic flux in the sun’s photosphere. We refer to solar cycles by number with solar cycle 1 occurring in 1755 because that year represents the earliest cycle which can be found in modern astronomical observation data, but previous cycles have been deduced over millennia through dendrochronology, sediment analysis, isotope observations, and other methods. Continue reading “The Sunspots Are Coming (Again)”

Open Source Spacecraft Avionics With NASA’s Core Flight System

One thing about developing satellites, spacecraft, rovers and kin is that they have a big overlap in terms of functionality. From communication, to handling sensors, propulsion, managing data storage, task scheduling and so on, the teams over at NASA have found over the years that with each project there was a lot of repetition.

Block diagram of a simplified avionics system. (Credit: NASA)
Block diagram of a simplified avionics system. (Credit: NASA)

Either they were either copy-pasting code from old projects, or multiple teams were essentially writing the same code.

To resolve this inefficiency NASA developed the Core Flight System (cFS), a common software framework for spacecraft, based on code and lessons from various space missions. The framework, which the space agency has released under the Apache license, consists of an operating system abstraction layer (OSAL), the underlying OS (VxWorks, FreeRTOS, RTEMS, POSIX, etc.), and the applications that run on top of the OSAL alongside the Core Flight Executive (cFE) component. Here cFS apps can be loaded and unloaded dynamically, along with cFS libraries, as cFS supports both static and dynamic linking.

There are a few sample applications to get started with, and documentation is available, should you wish to use cFS for your own projects. Admittedly, it’s a more complex framework than you’d need for a backyard rover. But who knows? As access to space gets cheaper and cheaper, you might actually get the chance to put together a DIY CubeSat someday — might as well start practicing now.

Could North Korea’s New Satellite Have Spied On Guam So Easily?

Earlier this week, another nation joined the still relatively exclusive club of those which possess a satellite launch capability. North Korea launched their Malligyong-1 spy satellite, and though it has naturally inflamed the complex web of political and military tensions surrounding the Korean peninsula, it still represents something of a technical achievement for the isolated Communist state. The official North Korean news coverage gleefully reported with much Cold War style rhetoric, that Kim Jong-Un had visited the launch control centre the next day and viewed intelligence photographs of an American base in Guam. Could the satellite have delivered in such a short time? [SatTrackCam Leiden] has an interesting analysis. Continue reading “Could North Korea’s New Satellite Have Spied On Guam So Easily?”

Harvard SETI Project Helps ID Mystery Sound

Last month, thousands of people in New Hampshire took to social media to report an explosion in the sky that was strong enough to rattle windows. Naturally aliens were blamed by some, while cooler heads theorized it may have been a sonic boom from a military aircraft. But without any evidence, who could say?

Luckily for concerned residents, this was precisely the sort of event Harvard’s Galileo Project was designed to investigate. Officially described as a way to search for “technological signatures of Extraterrestrial Technological Civilizations (ETCs)”, the project keeps a constant watch on the sky with a collection of cameras and microphones. With their gear, the team was able to back up the anecdotal reports with with hard data.

Continue reading “Harvard SETI Project Helps ID Mystery Sound”

A black motion system with two stepper motors. A green circuit board is fixed in a rotating cage in the center, and the entire assembly is on a white base atop a green cutting mat. Wires wind through the assembly.

Pi-lomar Puts An Observatory In Your Hands

Humans have loved looking up at the night sky for time immemorial, and that hasn’t stopped today. [MattHh] has taken this love to the next level with the Pi-lomar Miniature Observatory.

Built with a Raspberry Pi 4, a RPi Hi Quality camera, and a Pimoroni Tiny2040, this tiny observatory does a solid job of letting you observe the night sky from the comfort of your sofa (some assembly required). The current version of Pi-lomar uses a 16mm ‘telephoto’ lens and the built-in camera libraries from Raspbian Buster. This gives a field of view of approximately 21 degrees of the sky.

While small for an observatory, there are still 4 spools of 3D printing filament in the five different assemblies: the Foundation, the Platform, the Tower, the Gearboxes and the Dome. Two NEMA 17 motors are directed by the Tiny2040 to keep the motion smoother than if the RPi 4 was running them directly. The observatory isn’t waterproof, so if you make your own, don’t leave it out in the rain.

If you’re curious how we might combat the growing spectre of light pollution to better our nighttime observations, check out how blinking can help. And if you want to build a (much) larger telescope, how about using the Sun as a gravitational lens?

Continue reading “Pi-lomar Puts An Observatory In Your Hands”

Continental Europe’s First Spaceport – And It’s Above The Arctic Circle!

When we think of a space launch it’s likely our minds might turn to the lush swampland of Florida’s Cape Canaveral, or the jungle of Kourou in Guyana. These are both in the tropical regions on sites as close to the Equator as the governments who built them could find, because the higher rotational speed of the planet at its widest point gives departing rockets a bit of extra kick. Even the Soviet Baikonur cosmodrome in modern-day Kazakhstan which sits at around 45 degrees North, was chosen in part to lie in one of the more southerly Soviet republics.

It’s unexpected then to report on the opening of what may at the time of writing be the world’s newest spaceport, situated on the island of Andøya in northern Norway, at around 69 degrees North. Just what is going on?

The answer for the German company Isar Aerospace is that their launches from the site will be ideally placed not for low-inclination orbits but for polar orbits, something of a valuable commodity and a worthy point of competition when compared to equatorial sites. We have shamefacedly to admit that we’re not completely au fait with Norwegian geography, so it took us a minute to find Andøya towards the top of the country’s westward chain of islands.

The spaceport itself lies in a bay facing westward over the Norwegian Sea, and the launch platform is on a stone jetty protruding into the water. It appears to be a beautiful landscape, a suitable reward for any hardy souls who make the trip to watch a launch. Unexpectedly the spaceport stands alone in Continental Europe, though before too long it’s likely to be joined by other projects including one in northern Scotland. European skies are likely to become busier over the coming years.