Hackaday Invades Toronto

Next Wednesday, April 20th, Hackaday will invade Toronto.

[Sophi Kravitz] and [Michael Guilfoil] are heading north of the border to meet up with our friends at HacklabTO. They’ll be hosting a Bring A Hack meetup with drinks, snacks, and swag.

Since this is a Bring A Hack, attendees are encouraged to bring whatever project you’re working on and show it off, give a lightning talk, and pitch it to the community. [Sophi]’s last visit to Toronto brought some crazy hardware to the meetup, including a gaming glove for a Commodore 64, a demonstration of Ontario’s power plants, testing hamburgers for anything that is not beef with PCR, and analog synthesizers.

Since the Hackaday Prize is in full swing, this is an excellent opportunity to team up with fellow Torontonians for a great Prize entry, or just bounce a few ideas off people to see if your idea is feasible.

The meet and greet at the Hacklab is free, but we would request that you RSVP for the event. The event is also on Hackaday.io, just in case you’d like to chat with [Sophi] or other attendees.

The HackadayPrize2016 is Sponsored by:

CarontePass: Open Access Control For Your Hackerspace

A problem faced by all collaborative working spaces as they grow is that of access control. How can you give your membership secure access to the space without the cost and inconvenience of having a keyholder on site at all times.

[Torehc] is working on solving this problem with his CarontePass RFID access system, at the Kreitek Makerspace (Spanish, Google Translate link) in Tenerife, Canary Islands.

Each door has a client with RFID readers, either a Raspberry Pi or an ESP8266, which  connects via WiFi to a Raspberry Pi 2 server running a Django-based REST API. This server has access to a database of paid-up members and their RFID keys, so can issue the command to the client to unlock the door. The system also supports the Telegram messaging service, and so can be queried as to whether the space is open and how many members are in at a particular time.

All the project’s resources are available on its GitHub repository, and there is a project blog (Spanish, Google Translate link) with more details.

This is a project that is still in active development, and [Torehc] admits that its security needs more work so is busy implementing HTTPS and better access security. As far as we can see through the fog of machine translation at the moment it relies on the security of its own encrypted WiFi network, so we’d be inclined to agree with him.

This isn’t the first hackerspace access system we’ve featured here. The MakerBarn in Texas has one using the Particle Photon, while the Lansing Makers Network in Michigan have an ingenious mechanism for their door, and the Nesit hackerspace in Connecticut has a very fancy system with video feedback. How does your space solve this problem?

The HackadayPrize2016 is Sponsored by:

After The Prize: What’s Next For The Light Electric Utility Vehicle

Winner of the third place in last year’s Hackaday Prize was [Chris Low]’s Light Electric Utility Vehicle. In case you think that once a Hackaday Prize is in the bag then that’s it and the project creator packs up and goes home, [Chris] dispels that idea, he’s invested his winnings straight back into his project and posted his latest progress on an improved Mk3 model.

Light Electric Utility Vehicle, 2015-style
Light Electric Utility Vehicle, 2015-style

We first covered the Light Electric Utility Vehicle back in June 2015 when it was first entered for the 2015 Hackaday Prize. The aim was to produce a rugged and simple small electric vehicle that could be powered by solar energy and that was suitable for the conditions found in South Sudan, where [Chris] works. The vehicle as we saw it then was an articulated design, with chain drive to bicycle-style wheels. The Mk3 version by comparison has lost the articulation in favour of rack-and-pinion steering, has in-hub motors instead of chain drive, and now features coil-spring suspension. You might comment that it has lost some of its original simplicity and become something more like a conventional electric UTV, but along the way it has also become more of a practical proposition as an everyday vehicle.

You can follow the entire build log on the Light Electric Utility Vehicle’s project page on hackaday.io, and below the break have a look at [Chris]’s video showing it in action. Continue reading “After The Prize: What’s Next For The Light Electric Utility Vehicle”

A Developer’s Kit For Medical Ultrasound

From watching a heart valve in operation to meeting your baby before she’s born, ultrasound is one of the most valuable and least invasive imaging tools of modern medicine. You pay for the value, of course, with ultrasound machines that cost upwards of $100k, and this can put them out of reach in many developing countries. Sounds like a problem for hackers to solve, and to help that happen, this 2016 Hackaday prize entry aims to create a development kit to enable low-cost medical ultrasounds.

PhysicalSpaceDeveloped as an off-shoot from the open-source echOpen project, [kelu124]’s Murgen project aims to enable hackers to create an ultrasound stethoscope in the $500 price range. A look at the test bench reveals that not much specialized equipment is needed. Other than the Murgen development board itself, everything on the test bench is standard issue stuff. Even the test target, an ultrasound image of which leads off this article, is pretty common stuff – a condom filled with tapioca and agar. The Murgen board itself is a cape for a BeagleBone Black, and full schematics and code are available.

We’ll be paying close attention to what comes out of the ultrasound dev kit. Perhaps something as cool as this augmented reality ultrasound scope?

&nbsp

The HackadayPrize2016 is Sponsored by:

Flying The Infinite Improbability Drive

Not since the cold fusion confusion of 1989 has the pop science media industry had a story like the EmDrive. The EmDrive is a propellantless thruster – a device that turns RF energy into force. If it works, it will revolutionize any technology that moves. Unlike rocket motors that use chemicals, cold gas, ions, or plasma, a spacecraft equipped with an EmDrive can cruise around the solar system using only solar panels. If it works, it will violate the known laws of physics.

After being tested in several laboratories around the world, including Eagleworks, NASA’s Advanced Propulsion Physics Laboratory, the concept of a device that produces thrust from only electricity is still not disproven, ridiculed, and ignored. For a device that violates the law of conservation of momentum, this is remarkable. Peer review of several experiments are ongoing, but [Paul] has a much more sensational idea: he’s building an EmDrive that will propel a cubesat.

Make no mistake, our current understanding of the universe is completely incompatible with the EmDrive. The idea of an engine that dumps microwave energy into a metal cone and somehow produce thrust is on the fringes of science. No sane academic physicist would pursue this line of research, and the mere supposition that the EmDrive might work is irresponsible. Until further peer-reviewed experiments are published, the EmDrive is the fanciful dream of a madman. That said, if it does work, we get helicarriers. Four EmDrives mounted to a Tesla Roadster would make a hovercar. Your grandchildren would only see Earth’s sun as a tiny speck in the night sky.

This isn’t [Paul]’s first attempt to create a working propellantless thruster. For last year’s Hackaday Prize, [Paul] built a baby EmDrive. Unlike every other EmDrive experiment that used 2.4GHz microwaves, [Paul] designed his engine to operate on 22 to 26 GHz. This means [Paul]’s is significantly smaller and can easily fit into a cubesat. If it works, this cubesat will be able to maintain its orbit indefinitely, fly to the moon and back, or go anywhere in the solar system provided the solar panels get enough light.

While [Paul]’s motivations in creating a citizen science version of the EmDrive are laudable, Hackaday.io’s own baby EmDrive does not display the requisite scientific rigor for a project of this magnitude. Experimental setups are ill-defined, graph axes are unlabeled, and there is not enough information to properly critique [Paul]’s baby EmDrive experiments.

That said, we can’t blame a guy for trying, and the EmDrive is still an active area of research with several papers under peer review. [Paul]’s plan of putting an EmDrive into orbit is putting the cart several miles ahead of the horse, but it is still a very cool project for this year’s Hackaday Prize.

The HackadayPrize2016 is Sponsored by:

A Low-Cost Mini PCB Printer

The next great advancement in homebrew electronics is an easy way to turn copper clad board into functional circuit boards. This has been done since the 60s with etch resist pens, sheets of etch resist rub-on transfers, the ever-popular photocopy and clothes iron, and now with small CNC mills. It’s still a messy, slow, and expensive process. [johnowhitaker] and [esot.eric] are trying to solve the latter of these problems with a mini PCB printer made out of DVD drives.

Playing around with the guts of a DVD drive is something [john] and [eric] have been doing for a while now, and for good reason. There’s a lot of interesting tech in DVD drives, with motors, steppers, and gears able to make very, very accurate and precise movements. Most PCBs aren’t very big, either, so a laser cutter that can only traverse an area a few inches square isn’t that much of a downside in this case.

With a small diode laser mounted to a CNC gantry constructed out of DVD drives, the process of making a PCB is actually pretty simple. First, a slurry of laser printer toner and alcohol is applied to the board. Next, the laser on this PCB printer lases over the traces and copper fills, melting the toner. The board is removed, the excess toner wiped off, and the unwanted copper is melted away. Simple, even if it is a little messy.

Of course this method cannot do plated traces like your favorite Internet-based board house, but this does have a few advantages over any other traditional homebrew method. It’s cheap, since CD and DVD drive mechanisms are pretty much standardized between manufacturers. It’s also easy to add soldermask printing to this build, given that soldermasks can be cured with light. It’s a very cool build, and one that would find a home in thousands of garages and hackerspaces around the world.

The HackadayPrize2016 is Sponsored by:

Everyman’s Turbomolecular Pump

What can you do with a very good vacuum pump? You can build an electron microscope, x-ray tubes, particle accelerators, thin films, and it can keep your coffee warm. Of course getting your hands on a good vacuum pump involves expert-level scrounging or a lot of money, leading [DeepSOIC] and [Keegan] to a great entry for this year’s Hackaday Prize. It’s the Everyman’s Turbomolecular Pump, a pump based on one of [Nikola Tesla]’s patents. It sucks, and that’s a good thing.

The usual way of sucking the atmosphere out of electron microscopes and vacuum tubes begins with a piston or diaphragm pump. This gets most of the atmosphere out, but there’s still a little bit left. To get the pressure down even lower, an oil diffusion pump (messy, but somewhat cheap) or a turbomolecular pump (clean, awesome, and expensive) is used to suck the last few molecules of atmosphere out.

The turbomolecular pump [DeepSOIC] and [Keegan] are building use multiple spinning discs just like [Tesla]’s 1909 patent. The problem, it seems, is finding a material that can be made into a disc and can survive tens of thousand of rotations per minute. It’s a very, very difficult build, and a mistake in fabricating any of the parts will result in a spectacular rapid disassembly of this turbomolecular pump. The reward, though, would be great. A cheap turbomolecular pump would be a very useful device in any hackerspace, fab lab, or workshop garage.

The HackadayPrize2016 is Sponsored by: