An Automotive Locksmith On The Flipper Zero And Car Theft

Here in the hacker community there’s nothing we love more than a clueless politician making a fool of themselves sounding off about a technology they know nothing about. A few days ago we were rewarded in spades by the Canadian Minister of Innovation, Science and Industry François-Philippe Champagne, who railed against the Flipper Zero, promising to ban it as a tool that could be used to gain keyless entry to a vehicle.

Of course our community has roundly debunked this assertion, as capable though the Flipper is, the car industry’s keyless entry security measures are many steps ahead of it. We’ve covered the story from a different angle before, but it’s worth returning to it for an automotive locksmith’s view on the matter from [Surlydirtbag].

He immediately debunks the idea of the Flipper being used for keyless entry systems, pointing out that thieves have been using RF relay based attacks which access the real key for that task for many years now. He goes on to address another concern, that the Flipper could be used to clone the RFID chip of a car key, and concludes that it can in the case of some very old vehicles whose immobilizers used simple versions of the technology, but not on anything recent enough to interest a car thief.

Of course, to many readers this will not exactly be news. But it’s still important, because perhaps some of us will have had to discuss this story with non-technical people who might be inclined to believe such scare stories. Being able to say “Don’t take it from me, take it from an automotive locksmith” might just help. Meanwhile there is still the concern of CAN bus attacks to contend with, something the manufacturers could have headed off had they only separated their on-board subsystems.

Continue reading “An Automotive Locksmith On The Flipper Zero And Car Theft”

Canadian Engineers? They Have A Ring About Them

How can you spot an engineer? It can be tricky, but it is a little easier in Canada. That’s because many Canadian engineers have been through the Ritual of the Calling of an Engineer and wear an iron or steel ring to symbolize their profession. The ring has a very odd history that originated in 1922 as the brainchild of Professor H. E. T. Haultain. While he may not be a recognizable name, at least one famous person was involved with creating the Ritual.

H. E. T. Haultain

The ring itself has facets on the outer surface, and you wear it on the little finger of your dominant hand. Originally handmade, the ring reminds the wearer of the engineer’s moral, ethical, and professional commitment. In addition to being a visible reminder, the ring is made to drag slightly as you write or draw, as a constant reminder of the engineer’s obligation. With more experience, the ridges wear down, dragging less as you get more experience.

There is a rumor that the first rings were made from the metal of a bridge that collapsed due to poor design, but this appears untrue. The presentation ceremony is understated, with limited attendance and very little publicity.

Continue reading “Canadian Engineers? They Have A Ring About Them”

Hackaday Links Column Banner

Hackaday Links: May 15, 2022

It may be blurry and blotchy, but it’s ours. The first images of the supermassive black hole at the center of the Milky Way galaxy were revealed this week, and they caused quite a stir. You may recall the first images of the supermassive black hole at the center of the M87 galaxy from a couple of years ago: spectacular images that captured exactly what all the theories said a black hole should look like, or more precisely, what the accretion disk and event horizon should look like, since black holes themselves aren’t much to look at. That black hole, dubbed M87*, is over 55 million light-years away, but is so huge and so active that it was relatively easy to image. The black hole at the center of our own galaxy, Sagittarius A*, is comparatively tiny — its event horizon would fit inside the orbit of Mercury — a much closer at only 26,000 light-years or so. But, our black hole is much less active and obscured by dust, so imaging it was far more difficult. It’s a stunning technical achievement, and the images are certainly worth checking out.

Another one from the “Why didn’t I think of that?” files — contactless haptic feedback using the mouth is now a thing. This comes from the Future Interfaces Group at Carnegie-Mellon and is intended to provide an alternative to what ends up being about the only practical haptic device for VR and AR applications — vibrations from off-balance motors. Instead, this uses an array of ultrasonic transducers positioned on a VR visor and directed at the user’s mouth. By properly driving the array, pressure waves can be directed at the lips, teeth, and tongue of the wearer, providing feedback for in-world events. The mock game demonstrated in the video below is a little creepy — not sure how many people enjoyed the feeling of cobwebs brushing against the face or the splatter of spider guts in the mouth. Still, it’s a pretty cool idea, and we’d like to see how far it can go.

Continue reading “Hackaday Links: May 15, 2022”

Want A Leak-Proof Camper? Better Fire Up The 3D Printer Now.

Ah, the great outdoors.  Rejuvenating air rife with mosquitoes and other nasties, and spending some time hanging out in the woods sleeping in a 3D printed camper. Wait– what was that last one again?

Yep, it’s exactly what it sounds like. A Canadian team headed by [Randy Janes] of Wave of the Future 3D, printed a camper at [Create Cafe] in Saskatoon, Saskatchewan, using high-flow nozzles on one of the largest 3D printers in North America. These layers are 10.3mm thick!!

This trailer is one single printed piece, taking 230 hours — nine and a half days — of straight printing with only a few hangups. Weighing 600lbs and at 13 feet long by six feet wide — approximately 507 cubic feet, this beats the previous record holder for largest single piece indoor print in size by three times over.

Continue reading “Want A Leak-Proof Camper? Better Fire Up The 3D Printer Now.”

Retrotechtacular: Weather Station Kurt

Sometimes when researching one Hackaday story we as writers stumble upon the one train of thought that leads to another. So it was with a recent look at an unmanned weather station buoy from the 1960s, which took us on a link to a much earlier automated weather station.

The restored Kurt in the Canadian National War Museum.
The restored Kurt in the Canadian National War Museum.

Weather Station Kurt was the only successful installation among a bold attempt by the German military during the Second World War to gain automated real-time meteorological data from the Western side of the Atlantic. Behind that simple sentence hides an extremely impressive technical and military achievement for its day. This was the only land-based armed incursion onto the North American continent by the German military during the entire war. Surrounded as it was though by secrecy, and taking place without conflict in an extremely remote part of Northern Labrador, it passed unnoticed by the Canadian authorities and was soon forgotten as an unimportant footnote in the wider conflagration.

Kurt took the form of a series of canisters containing a large quantity of nickel-cadmium batteries, meteorological instruments, a telemetry system, and a 150W high frequency transmitter. In addition there was a mast carrying wind speed and direction instruments, and the transmitting antenna. In use it was to have provided vital advance warning of weather fronts from the Western Atlantic as they proceeded towards the European theatre of war, the establishment of a manned station on enemy territory being too hazardous.

A small number of these automated weather stations were constructed by Siemens in 1943, and it was one of them which was dispatched in the U-boat U537 for installation on the remote Atlantic coast of what is now part of modern-day Canada. In late October 1943 they succeeded in that task after a hazardous trans-Atlantic voyage, leaving the station bearing the markings of the non-existent “Canadian Meteor Service” in an attempt to deceive anybody who might chance upon it. In the event it was not until 1977 that it was spotted by a geologist, and in 1981 it was retrieved and taken to the Canadian War Museum.

There is frustratingly little information to be found on the exact workings on the telemetry system, save that it made a transmission every few hours on 3940kHz. A Google Books result mentions that the transmission was encoded in Morse code using the enigmatic Graw’s Diaphragm, a “sophisticated contact drum” named after a Dr. [Graw], from Berlin. It’s a forgotten piece of technology that defies our Google-fu in 2017, but it must in effect have been something of a mechanical analogue-to-digital converter.

Should you happen to be visiting the Canadian capital, you can see Kurt on display in the Canadian War Museum. It appears to have been extensively restored from the rusty state it appears in the photograph taken during its retrieval, it would be interesting to know whether anything remains of the Graw’s Diaphragm. Do any readers know how this part of the station worked? Please let us know in the comments.

Weather station Kurt retrieval image, Canadian National Archives. (Public domain).

Weather station Kurt in museum image, SimonP (Public domain).

Super Massive Musical Instrument

Performing music in open spaces can be a real challenge. The acoustics of the space can play spoil-sport. Now imagine trying to play an instrument spread out over tens of kilometres. The folks at [LimbicMedia] wrote in to tell us about the project they worked on to build the The World’s Largest Musical Instrument.

The system consists of wirelessly controlled air horns deployed at remote locations. Each air horn is self contained, driven by a supply of compressed air from a scuba diving tank and battery powered electronics. The wireless link allows the air horns to be placed up to 10kms away from the base station. Each air horn is tuned to a specific note of the piano keyboard which, in turn, is configured to transmit its note data to the air horns.

HornsBeaconHill_02Currently, they have built 12 air horns, enough to let them play the Canadian and British anthems. The horns are built out of PVC piping and other off-the-shelf plastics with the dimensions of the horn determining its note. The setup was installed and performed at the Music by the Sea festival recently, by mounting the air horns on 12 boats which were stationed out at Sea in the Bamfield Inlet in Eastern Western Canada. But that was just a small trial. The eventual plan is to set up air horns all around Canada, and possibly other places around the world, and synchronise them to play music simultaneously, to commemorate the 150th Canada Day celebrations in 2017.

There aren’t many details shared about the hardware, but it’s not too difficult to make some guesses. A micro-controller to operate the air solenoid, long range radio link to connect all the air horns to the base station, and another controller to detect the key strokes on the Piano. The limiting issue to consider with this arrangement is the spatial separation between the individual air horns. Sound needs about 2.9 seconds to travel over a kilometer. As long as all the air horns are at approximately the same distance from the audience, this shouldn’t be a problem. See how they did in the video after the break. We do know of another project which handled that problem brilliantly, but we’ll leave the details for a future blog post.

This isn’t the first time [LimbicMedia] was commissioned to create audio-visual public installations. A couple of years back they built this Sound Reactive Christmas Tree in Victoria, British Columbia.

Continue reading “Super Massive Musical Instrument”

Screw Drive Tractor Is About To Conquer Canada

The incredible screw drive tractor is back. We’ve covered the previous test ride, which ended with a bearing pillow block ripping in half, but since then, again, a lot of repair work has been done. [REDNIC79] reinforced the load-bearing parts and put on a fresh pair of “tires”. The result is still as unbelievable as the previous versions, but it now propels itself forward at a blazing 3 mph (this time without tearing itself apart).

screw_drive_tractor_welding_screw_pods[REDNIC79] walks us through all the details of the improvements he made since the first version. After the last failure, he figured, that a larger screw pod diameter would give the vehicle a better floatation while smaller thread profile would prevent the screws from digging too deep into the ground, thus reducing the force required to move the vehicle forward.

[REDNIC79] found four identical 100 pounds, 16 inch diameter propane tanks to build the new pods from. The tanks were a bit too short for the tractor, so he cut open two of the tanks and used them to extend the other two before welding a double thread screw onto each. He also tapered the front ends of the tanks to make the ride even smoother. After mounting the new pods to the speedster, a pair of custom steel chain guards were added to prevent rocks from getting into the chain. And then, it was time for another test ride. Enjoy the video:

Continue reading “Screw Drive Tractor Is About To Conquer Canada”