Tangible Programming Brings Code Into The Real World

We love the idea of [Amos]’s Tangible Programming project. It reminds us of those great old Radioshack electronics labs where the circuitry concepts took on a physical aspect that made them way easier to digest than abstractions in an engineering textbook.

MIT Scratch teaches many programming concepts in an easy to understand visual way. However, fundamentally people are tactile creatures and being able to literally feel and see the code laid out in front could be groundbreaking for many young learners. Especially those with brains that favor physical touch and interaction such as ADHD or Asperger’s minds.

The boards are color-coded and communicate via an I2C bus. Each board’s logic and communication is handled by an ATTiny or ATMega. The current processing is visible through LEDs or even an OLED display. Numbers are input either through thumbwheel switches or jumpers.

The code concepts will, of course, be simple and focused due to the physical nature of the blocks. Integer arithmetic, simple loops, and if/else conditionals. Quite a lot of concepts can be built around this and it could be a natural diving board into the aforementioned Scratch and eventually an easy to learn language like python.

FieldKit Is The Grand Prize Winner Of The 2019 Hackaday Prize

FieldKit, an open-source, modular sensor system for conducting research in harsh environments has just been named the Grand Prize winner of the 2019 Hackaday Prize. The award for claiming the top place and title of “Best Product” in this nine-month global engineering initiative is $125,000. Five other top winners and five honorable mentions were also named during this evening’s Hackaday Prize Ceremony, held during the Hackaday Superconference in Pasadena, California.

This year’s Hackaday Prize focused on product development. From one good idea and a working prototype, entrants were encouraged to iterate on their UX, industrial design, ergonomics, software, and mechanical plans as they worked toward a product that is both manufacturable and meets the needs of the user it has been designed for. Out of twenty finalists, the top eleven are covered below. Over $200,000 in cash prizes have been distributed as part of this year’s initiative where thousands of hardware hackers, makers, and artists compete to build a better future. Continue reading “FieldKit Is The Grand Prize Winner Of The 2019 Hackaday Prize”

The Ultimate Hacker’s Compact 4WD!

If you’ve spent any time at one of the larger European hacker camps over the last few years you’ll have seen the invasion of little electric vehicles sporting hoverboard motors as an all-in-one propulsion system. German hackers, in particular, have incorporated them into the iconic Bobby Car children’s toy, and ca be seen whizzing around looking slightly incongruous as adults perched on transport designed for five-year-olds.

[Peter Pötzi] has created just such an electric Bobby Car, and his one is particularly well-executed with a 3D-printed steering column extender and four motors for full 4WD rather than the usual two. A steering wheel-mounted display has a neat enclosure, and is fed SPI from the ESP32 that runs the show via an RJ45 patch cable. Many of these builds use hoverboard motor controllers with hacked firmware, but this one instead takes a set of off-the-shelf VESCs. Control comes via a set of Xbox 360 trigger buttons mounted to the underside of the steering wheel.

The result is typically self-contained as are all the Bobby Car builds, with the added bonus of the extra power of four motors rather than two. We’re not so sure that 4WD gives it off-road capabilities though, but having seen these vehicles perform some nifty maneuvers in the past perhaps it’ll lend extra traction on corners.

Finally Your Air Drumming Has An Outlet

Two engineering students are hard at work on this air drum which they hope will help disabled people and people in nursing homes. Though, we think it just looks fun!

Each board is its own module consisting of the electronics and 3D printed cases. The modules each contain an arduino mini, IR sensor, and LEDs. They share power, audio, and communicate with an i2c bus. Two modules are special, one holds the power system and the other a Raspberry Pi. The units can be put together in different configurations. Finally, they are capped with speaker units.

The demo shown in the video, which you can see after the break, looks fun. The response time is pretty fast and it looks like you can measure all sorts of parameters. This can then be translated into different velocities, pitches, and instruments. It’s somewhere between a theremin and a drum kit, very cool.

Continue reading “Finally Your Air Drumming Has An Outlet”

Detecting Water Before It’s Too Late

[mcu_nerd] is like any engineer, which is why his problem of an occasionally leaky water heater sure looks like a research project with no end in sight. Sure there’s probably a commercial product out there that can be had for half the cost and a few clicks of the mouse, but what’s the point in actually solving the problem?

His log starts with research into detecting low battery voltages. Then it was a quick exploration in designing low-power circuits. When the Flexible PCB contest came along, he realized that there was a chance to design a better electrode, and he ended up winning one of the vouchers; which is where he’s at now.

It’s definitely a work in progress, and if anything it’s just a quick five minute read and an opportunity to commiserate with another wayward soul. We do like his clever use of a tealite candle tin as both the second electrode and case for his water detection circuit. There are also some KiCad files and code.

An Open Source Toolbox For Studying The Earth

Fully understanding the planet’s complex ecosystem takes data, and lots of it. Unfortunately, the ability to collect detailed environmental data on a large scale with any sort of accuracy has traditionally been something that only the government or well-funded institutions have been capable of. Building and deploying the sensors necessary to cover large areas or remote locations simply wasn’t something the individual could realistically do.

But by leveraging modular hardware and open source software, the FieldKit from [Conservify] hopes to even the scales a bit. With an array of standardized sensors and easy to use software tools for collating and visualizing collected data, the project aims to empower independent environmental monitoring systems that can scale from a handful of nodes up to several hundred.

We’ve all seen more than enough DIY environmental monitoring projects to know there’s nothing particularly new or exciting about stuffing a few cheap sensors into a plastic container. But putting high quality, reliable hardware into large scale production is another thing entirely. Especially when your target user may have limited technical knowledge.

That’s why FieldKit is designed around a common backplane with modular sensors and add-on boards that can be plugged in and easily configured with a smartphone application. Whether the node is going to be mounted to a pole and powered by a solar panel, or attached to a buoy, most of the hardware stays the same.

While the electronics and the software interface are naturally the stars of the show here, we can’t help but also be impressed with the enclosure for the FieldKit. It seems a minor thing, but as we’ve seen from the projects that have come our way over the years, finding a box to put your hardware in that’s affordable, adaptable, and weatherproof is often a considerable challenge in itself. Rather than using something commercially available, [Conservify] has designed their own enclosure that’s inspired by the heavy duty (but prohibitively expensive) cases from Pelican. It features a replaceable panel on one side where the user can pop whatever holes will be necessary to wire up their particular project without compromising the case itself; just get a new panel when you want to reconfigure the FieldKit for some other task. Prototypes have already been 3D printed, and the team will be moving to injection molded versions in the near future.

As a finalist in the 2019 Hackaday Prize, FieldKit exemplifies everything we’re looking for this year: a clear forward progression from prototype to final hardware, an obvious need for mass production, and the documentation necessary to show why this project is deserving of the $125,000 grand prize up for grabs.

Continue reading “An Open Source Toolbox For Studying The Earth”