Is That Cheap Multimeter As Good As A Fluke? Let’s Find Out

When [learnelectronics] talks about cheap meters, he always says, “If you are doing this for a living, get yourself a Fluke.” But he realized he’s never shown the inside of a Fluke meter, so he rectified that in his most recent post. For comparison, he opens up a Fluke 26-III and an Aneng AN870 (retailing at about $500 and $30, respectively).

The initial opening shows that the Fluke has hefty brand name fuses, but the Aneng has little generic fuses. In addition, the Fluke has an internal case that helps keep you away from live voltage. The Fluke also has a proper rotary switch, while the cheap meter has a switch that is etched on the PC board; a cost-cutting trick that’s often a point of failure on these cheap meters.

The Fluke also has a significantly larger number of protection devices and heftier components, you presume can take more punishment. Of course, if you don’t have a few hundred volts running through your meter, it probably doesn’t matter. The cheap meters are certainly good enough, even though you do get what you pay for, as you might expect.

As long as you have a meter open, you might as well hack it to have WiFi. Or, if you prefer, a serial port.

Continue reading “Is That Cheap Multimeter As Good As A Fluke? Let’s Find Out”

DIY Lawnmower Doesn’t Cut Grass Short

[nodemcu12ecanada] is serious about saving water, which is why they built this strange lawnmower that can cut grass taller.

Short lawns are one of those clever marketing victories, like convincing people to eat a lot of sugar, that’s been doing more harm than good ever since the victory was won. Short grass is weak grass, with shallow roots, weakness to weeds, and a lot of water requirement. On top of that the grass is always in a state of panic so it grows extra fast to get to a more “natural” height. It’s great if you want to sell fertilizer, seeds, and lawnmowers. Maybe not so great for the environment.

Most lawnmowers can’t even be set high enough for healthy grass so [nodemcu12ecanada] took three electric weed whackers and bolted them to an angle iron frame. It has a lot of advantages. It’s light. You don’t need to sharpen a blade. It’s quiet. It’s electric. It’s strange appearance will scare your neighbors off from borrowing any of your tools. We love it!

Degassing Epoxy Resin On The (Very) Cheap

Anyone who’s tried to encapsulate something in epoxy resin knows how much of a hassle air bubbles can be. If you’re trying to get a perfectly clear finish, the last thing you want is a bunch of microscopic bubbles frozen in time. The best way to prevent this is to put the parts in a vacuum chamber so all the air works its way out before the epoxy cures, but that’s a considerable investment for a one-off project.

But assuming your parts are small enough, [Jasper Sikken] has a great tip that allows you to construct a simple vacuum chamber for just a few dollars. He shows his homemade chamber off in the video after the break, and we think you’ll agree that the change between before and after is pretty dramatic. The best part is that if you want to build your own version, you only need two parts.

The first one is a airtight container large enough to hold the piece you’re working on. Remember that the larger the chamber is the more time it will take to pump down to a suitable vacuum, so avoid the temptation to use something larger than necessary. [Jasper] used a glass jar with a locking lid, which is not only cheap and readily available, but has a decently large internal volume.

Obviously, the second component is the vacuum pump itself. This might normally be a tall order, but [Jasper] recently found that you can buy small battery-powered gadgets designed for sucking the air out of food containers for as little as $5 USD from the usual import sites. All you need to do is pop a hole in the lid of your container, hold the device over the hole, and watch the magic.

This method is great for anything smaller than a paperweight, but if you’ve got something bigger than that, you’ll need to step up your chamber game. Luckily even larger vacuum chambers can be built cheaply at a pinch.

Continue reading “Degassing Epoxy Resin On The (Very) Cheap”

How To Design A Low Cost Probe-Oscilloscope

[Mark Omo] sends in his write up on the design of what should hopefully be a sub-$100 oscilloscope in a probe. 

Many problems in engineering can be solved simply by throwing money at the them. It’s really when you start to apply constraints that the real innovation happens. The Probe-Scope Team’s vision is of a USB oscilloscope with 60MHz bandwidth and 25Msps. The cool twist is that by adding another probe to a free USB port on your computer you’re essentially adding a channel. By the time you get to four you’re at the same price as a normal oscilloscope but with an arguably more flexible set-up.

The project is also open source. When compared to popular oscilloscopes such as a Rigol it has pretty comparable performance considering how many components each channel on a discount scope usually share due to clever switching circuitry.

The probe is based around an Analog Devices ADC whose data is handled by a tag team of a Lattice FPGA and a 32bit PIC micro controller. You can see all the code and design files on their github. Their write-up contains a very thorough explanation of the circuitry. We hope they keep the project momentum going!

The Home-Made Drill Press Of Your Dreams

We are lucky to live in an age when tools have almost never been so affordable, when if we’d like a drill press on our benches we can pick one up for not a lot from our nearest discount store. If the cheapest tools aren’t very good quality then even the better ones aren’t that much more expensive. It’s evident that [Workshop DIY] has the resources to buy a decent drill press if he wanted one, but we’re fortunate that instead he’s taken the time to build one of his own from scratch (Russian language audio, Anglophones will have to enable YouTube subtitle translation).

The press itself is made entirely from box section steel tube, with what looks like 25mm square used for the base and 50mm for the vertical shaft. Instead of a rack and pinion to raise and lower the tool it has a slider that runs on a set of bearings and is lifted with a bicycle chain. The chuck itself is mounted to a shaft that runs through another set of bearings to the large pulley and motor from a washing machine. The result is a beautifully made drill press that seems to work very effectively. It may lack an adjustable table or selectable speeds, but we certainly couldn’t build it better than he has. Take a look, the video is below the break.

It shouldn’t be surprising what can be made in a well-appointed metalworking shop, perhaps we have been blinded by the convenience of readily available tools. If you’d like to see more, take a look at this DIY engine crane.

Continue reading “The Home-Made Drill Press Of Your Dreams”

What Does An Electronics Tinkerer’s Workbench Need?

Ever been in a situation where you’re not sure where to begin building your own electronics workbench or improve your existing one? [Jeff Glass] writes in with a blog post as detailed as it is beautifully long, chronicling each and every part of his own home lab in order to give us some ideas on how to get one started.

Despite [Jeff] using his own workbench tools accrued over 10 years of working in the field as prime example, his guide takes into account that you don’t need the latest and most expensive in order to get working. Affordable examples of the tools presented are suggested, along with plenty of links to follow and what to look for in each one of them. He even goes on and aside to note the lack of affordable versions of bench-top multimeters, seeing how the portable counterparts are so cheap and plentiful in contrast.

However, contrary to [Jeff]’s claims, we would argue that there are things you could do without, such as the oscilloscope. And you could use a regular soldering iron instead of a soldering station if you are in a pinch. It just depends on the type of work you’re looking to do, and simpler tools can work just fine, that’s what they’re there for after all. That’s not to say his advice is all bad though, just that every job has different requirements, and he notes just that in the final notes as something to keep in mind when building your own lab.

Lastly, we appreciate having a section dedicated to shop safety and the inclusion of soldering fume extractors in the recommendations. We’ve talked about the importance of fire safety when working with these tools at home before, and how soldering is not the only thing that can produce toxic fumes in your shop. With no shortage of great tips on how to build your own fume extractors, we hope everybody’s out there hacking safely.

Supercon SMD Challenge Gets 3D Printed Probes: Build Your Own

This year was the second SMD challenge at Supercon, so it stands to reason we probably learned a few things from last year. If you aren’t familiar with the challenge, you are served some pretty conventional tools and have to solder a board with LEDs getting progressively smaller until you get to 0201 components. Those are challenging even with proper tools, but a surprising number of people have managed to build them even using the clunky, large irons we provide.

During the first challenge, we did find one problem though. The LEDs are all marked for polarity. However, since we don’t provide super high power magnification, it was often difficult to determine the polarity, especially on the smaller parts. Last year, [xBeau] produced some quick LED testers to help overcome this problem. This year we refined them a bit.

As you can see, the 2018 model was a very clever use of what was on hand. A CR2032 holder powered the probes and the probes themselves were two resistors. If you can get the LED to light with the probes you know which lead is the anode and which is the cathode. A little red ink makes it even more obvious. Continue reading “Supercon SMD Challenge Gets 3D Printed Probes: Build Your Own”