Bright Bike Light Might Make Them Back Off

[Tegwyn☠Twmffat] recently got a job as a part-time bike courier and has come to realize just how dangerous it can be to mix leg-powered transportation with various sizes of engine-driven machinery. Some people would be content with a light, but why use a measly little bulb or two when you can have a giant, illuminated sign with a clear call to action? Because is there really any ceiling when it comes to safety precautions?

We think that 180 LEDs in a familiar formation oughta do it. An ultrasonic sensor detects cars behind the bike with the help of an Adafruit Feather. All those LEDs are controlled by a pair of L293 motor driver chips and a slide potentiometer for some dimming action. After all, they need to get enough juice to be visible in broad daylight, but also be dimmable so as not to blind people at night.

[Tegwyn☠Twmffat] calls this a simple project that is suitable for beginners. We think that is great, because bespoke safety measures should be accessible for everyone. So go get those Gerbers and make one for yourself! You can check it out in action on the back of a tricycle after the break.

Want a more relaxing ride? Recumbent is the reclined way to go.

Continue reading “Bright Bike Light Might Make Them Back Off”

Swamp Gas Will Get You Home

The energy to power a motorcycle has to come from somewhere, be it a power station, a solar panel, a gas station, or a hydrogen plant. There have been many ways to reduce the cost of extracting that energy over the years, but we think [Gijs Schalkx] may have hit upon one of the cheapest and simplest we’ve ever seen. It may not be free gas, but it is free swamp gas! His Uitsloot (we think that’s Dutch for “From the ditch”) motorcycle gets its power from methane generated in the sediment at the bottom of the Netherlands’ many waterways.

At its heart is a venerable Honda Cub moped, we’re guessing of the 50 cc version. On its pillion is a large clear container, inside of which is a balloon filled with gas. He doesn’t go into details in the video below the break, but we’re guessing he’s injecting the gas into the Honda’s airbox from which the engine can suck the gas/air mixture. We like his gas collector, a large inner tube with a collector funnel in its centre that floats on the water. He dons some waders and pokes the sediment with a long stick to release bubbles of methane. He then uses a long hose and a bicycle pump to inflate the balloon with the collected gas. We see him zipping around the streets of Arnhem under this unconventional power, though sadly we don’t see how far a full balloon will take him.

There’s a discussion to be had as to the environmental credentials of this project, but we think given that the naturally generated methane which would find its way into the atmosphere eventually has a greater effect on the climate than the CO2 produced by the engine, he may be onto a winner. It is however not a system that would scale to more than a few drivers poking at bogs with a stick.

Continue reading “Swamp Gas Will Get You Home”

Repair Hack Saves Tesla Owner From Massive Bill

As expensive as a new car is, it almost seems like a loss leader now to get you locked into exorbitantly expensive repairs at the dealership’s service department. That’s the reason a lot of us still try to do as much of the maintenance and repairs on our cars as possible — it’s just too darn expensive to pay someone else to do it.

Case in point: this story about a hapless Tesla owner who faced a massive repair bill on his brand new car. [Donald]’s tale of woe began when he hit some road debris with his two-wheel-drive Model 3. The object hit penetrated the plastic shield over the front of the battery pack, striking a fitting in the low-pressure battery cooling plumbing. The plastic fitting cracked, causing a leak that obviously needed repair. The authorized Tesla service center gave him the bad news: that he needed a new battery pack, at a cost of $16,000. Through a series of oversights, [Donald]’s comprehensive insurance on the car had lapsed, so he was looking at funding the repair, approximately half the cost of a new Model 3, out of pocket.

Luckily, he got in touch with [Rich Benoit] of The Electrified Garage, one of the few independent garages doing Tesla repairs and customizations. The video below is queued up to the part where they actually do the repair, which is ridiculously simple. After cutting off the remains of the broken fitting with a utility knife, [Rich]’s tech was able to cut a thread in both the fitting and the battery pack, and attach them together with a brass nipple from the plumbing section of the local home store. The total bill for the repair was $700, which still seems steep to us, but a far cry from what it could have been.

Hats off to [Rich] and his crew for finding a cost-effective workaround for this issue. And if you think you’ve seen his EV repairs before, you’re right. Of course, some repairs are more successful than others.

Continue reading “Repair Hack Saves Tesla Owner From Massive Bill”

Down The Fabrication Rabbit Hole To Build A Recumbent Bike

‘Tis the time of the year to find as many reasons as possible to shut off the smartphone and get yourself outside. [Rich Olson’s] newest excuse is a recumbent bicycle he built from at least three donor bikes. Of course we’ve seen any number of bike mods over the years (the tall bikes that integrate a ladder to climb up to the saddle have always held a special place in our hearts), but [Rich] left us a nice trail of bread crumbs on how to get into this yourself without breaking the bank.

He worked from a set of open source plans, with additional instructions laid out by [Brian in Ohio] in a bicycle hacking series on the Hacker Public Radio podcast. We learn in the first installment that you can get your hands on a torch that uses oxygen and MAP gas to braze the pipe joints — a quick Duck Duck Go search turns up kits that have the torch and both gases for about eighty bucks. Ask around your neighbourhood and you’re likely to find some bike frames from the disused and broken cycles lurking in dark garage corners. That first podcast page even has images that show you how to lay out fishmouth cuts where the tubes will meet.

But what really grabbed our attention is the tube bending for the recumbent seat. This is a speciality part that you’re not going to be able to salvage from traditional bikes. [Rich’s] project shows off this image of a bend template and the two main rails he used from the seat; but how did he make those bends? The third episode of [Brian in Ohio’s] series covers the one simple trick that electricians don’t want you to know. Those rails are made out of electrical conduit and you can easily buy/rent/borrow a commonplace conduit bending tool which has the handy advantage of including angle guides.

You’ll find [Rich’s] video after the break which begins with a slideshow and ends with a demo ride. That lets us see the lacing on the back side of the seat fabric that keeps it taught, yet comfy in a way a standard bike saddle just can’t be.

If this still hasn’t convinced you to pick up a torch, you can also build a recumbent with a wooden frame.

Continue reading “Down The Fabrication Rabbit Hole To Build A Recumbent Bike”

Human-Following Utility Trailer

[Théo Gautier] thought that a human-following utility trailer would be helpful for people working on farms. He didn’t just think about it, however, he designed and built it as a final project at the Agrilab FabAcademy at the University UniLasalle Polytechnique in northern France. He took the idea from concept to fruition in six weeks.

His build log documents the project very well, and takes you through his design choices and their implementation. The brains of the cart are a SAMD21E board that he made himself, and its sensory perception of the world is provided by HC-SR04 ultrasonic sensors and a PixyCam 2. Locomotion is provided by four each 100W DC motor / gearbox assemblies. He’s put a lot of effort into the construction process and posted a lot of photos of the intermediate steps. One piece of advice that caught our eye was to measure the diagonals of your frame repeatedly when welding it together — things can and do shift around. If you don’t, you may have to rectify the mistake like [Théo] did, with a big hammer.

Continue reading “Human-Following Utility Trailer”

Wing Can Expand To Fly Really Slow For Short Take-Off And Landing

[Mike Patey] had made a name for himself by building high-performance experimental aircraft. In his latest project, he added a transforming wing that can extend its chord by up to 16 inches for low speed and high angle of attack performance.

The aircraft in question, a bush plane named Scrappy, has been attracting attention long before [Mike] even started building the wings. Designed for extremely short take-off and landing (STOL) performance, only some sections of the fuselage frame remain from the original Carbon Cub kit. The wings are custom designed and feature double slats on the leading edge, combined with large flaps and drooping ailerons on the trailing edge. The slats form an almost seamless part of the wing for normal flying, but can expand using a series of linkages integrated into each precision machine wing rib. Making extensive use of CFD simulations, the slats were designed to keep the center-of-lift close to the center of the wing, even with 50 degrees of flaps. Without the slats, the pilot would need to use almost all the elevator authority to counteract the flaps and keep the aircraft’s nose up.

Leading-edge slats have been around since before WW2, but you don’t see them used in pairs like this. Aircraft like Scrappy will never be commercially viable, but innovation by people like [Mike] drives aviation forward. [Mike]’s previous project plane, Draco, was a large turboprop bush plane built around a PZL-104 Wilga. Sadly it was destroyed during an ill-considered take-off in 2019, but [Mike] is already planning its successor, Draco-X. Continue reading “Wing Can Expand To Fly Really Slow For Short Take-Off And Landing”

Could Airships Make A Comeback With New Hybrid Designs?

Airships. Slow, difficult to land, and highly flammable when they’re full of hydrogen. These days, they’re considered more of a historical curiosity rather than a useful method of transport.

Hybrid Air Vehicles are a UK-based startup working to create a modern take on the airship concept. The goal is to create cleaner air transport for short-hop routes, while also solving many of the issues with the airship concept with a drastic redesign from the ground up. Their vehicle that will do all this goes by the name of Airlander 10. But is it enough to bring airships back to the skies?

A Hybrid Technology

Airlander 10 seen taking off during its first flight.

The Airlander 10 is not a lighter-than-air craft like traditional airships. Instead, the vehicle uses the buoyancy from its helium envelope to create only 60-80% of its lift. The rest of the left is generated aerodynamically by air passing over the eliptical shape of the airship’s body. This lift can also be further augmented by two diesel-powered ducted fans on the sides of the airship, which can pivot to assist with takeoff and landing. Two further fixed ducted fans on the rear provide the primary propulsion for the craft.

The hybrid approach brings several benefits over the traditional airship model. Chief among them is that as the Airlander 10 is heavier than air, it need not vent helium throughout flight to avoid becoming positively buoyant as fuel burns off, nor does it need to vent helium to land. However, it still maintains the capability to loiter for incredibly long periods in the sky as it needs to burn very little fuel to stay aloft. Reportedly, it is capable of five days when manned, and even longer durations if operated in an unmanned configuration. Using helium for lift instead of solely relying on engine thrust and wings means that it is much more fuel efficient than traditional fixed-wing airliners. The company’s own estimates suggest the Airlander 10 could slash emissions on short-haul air routes by up to 90%. The gentle take-off and landing characteristics also mean the vehicle doesn’t require traditional airport facilities, making it possible to operate more easily in remote areas, on grass, sand, or even water. Continue reading “Could Airships Make A Comeback With New Hybrid Designs?”